Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Shimizu
1
60 kgAyazbayev
2
75 kgOchoa
3
61 kgParra
4
51 kgHerklotz
5
68 kgTratnik
6
67 kgHirt
8
62 kgKozhatayev
9
62 kgWerda
11
66 kgPerez
12
70 kgBerhane
13
66 kgPfingsten
15
69 kgWalsleben
16
66 kgNauleau
18
67 kgYates
20
58 kgMccormick
21
72.5 kgCampenaerts
22
68 kgKirsch
26
78 kgMager
29
60 kg
1
60 kgAyazbayev
2
75 kgOchoa
3
61 kgParra
4
51 kgHerklotz
5
68 kgTratnik
6
67 kgHirt
8
62 kgKozhatayev
9
62 kgWerda
11
66 kgPerez
12
70 kgBerhane
13
66 kgPfingsten
15
69 kgWalsleben
16
66 kgNauleau
18
67 kgYates
20
58 kgMccormick
21
72.5 kgCampenaerts
22
68 kgKirsch
26
78 kgMager
29
60 kg
Weight (KG) →
Result →
78
51
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | SHIMIZU Miyataka | 60 |
2 | AYAZBAYEV Maxat | 75 |
3 | OCHOA Diego Antonio | 61 |
4 | PARRA Heiner Rodrigo | 51 |
5 | HERKLOTZ Silvio | 68 |
6 | TRATNIK Jan | 67 |
8 | HIRT Jan | 62 |
9 | KOZHATAYEV Bakhtiyar | 62 |
11 | WERDA Maximilian | 66 |
12 | PEREZ Anthony | 70 |
13 | BERHANE Natnael | 66 |
15 | PFINGSTEN Christoph | 69 |
16 | WALSLEBEN Philipp | 66 |
18 | NAULEAU Bryan | 67 |
20 | YATES Adam | 58 |
21 | MCCORMICK Hayden | 72.5 |
22 | CAMPENAERTS Victor | 68 |
26 | KIRSCH Alex | 78 |
29 | MAGER Christian | 60 |