Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Wang
1
70 kgArredondo
2
58 kgWeening
3
68 kgHaas
5
71 kgStetina
6
63 kgMonsalve
7
62 kgPardilla
8
65 kgSeo
9
66 kgBaliani
10
66 kgGrmay
11
63 kgMeyer
13
68 kgKolahdozhagh
14
60 kgArashiro
17
64 kgEbsen
20
58 kgEuser
22
56 kgBeyer
23
63 kgWijaya
24
58 kgBertazzo
26
78 kgMizbani
27
67 kgJanse van Rensburg
28
63 kgGoos
29
65 kgTleubayev
31
70 kgFukushima
32
62 kgCraven
33
75 kg
1
70 kgArredondo
2
58 kgWeening
3
68 kgHaas
5
71 kgStetina
6
63 kgMonsalve
7
62 kgPardilla
8
65 kgSeo
9
66 kgBaliani
10
66 kgGrmay
11
63 kgMeyer
13
68 kgKolahdozhagh
14
60 kgArashiro
17
64 kgEbsen
20
58 kgEuser
22
56 kgBeyer
23
63 kgWijaya
24
58 kgBertazzo
26
78 kgMizbani
27
67 kgJanse van Rensburg
28
63 kgGoos
29
65 kgTleubayev
31
70 kgFukushima
32
62 kgCraven
33
75 kg
Weight (KG) →
Result →
78
56
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | WANG Meiyin | 70 |
2 | ARREDONDO Julián David | 58 |
3 | WEENING Pieter | 68 |
5 | HAAS Nathan | 71 |
6 | STETINA Peter | 63 |
7 | MONSALVE Yonathan | 62 |
8 | PARDILLA Sergio | 65 |
9 | SEO Joon Yong | 66 |
10 | BALIANI Fortunato | 66 |
11 | GRMAY Tsgabu | 63 |
13 | MEYER Travis | 68 |
14 | KOLAHDOZHAGH Amir | 60 |
17 | ARASHIRO Yukiya | 64 |
20 | EBSEN John | 58 |
22 | EUSER Lucas | 56 |
23 | BEYER Chad | 63 |
24 | WIJAYA Endra | 58 |
26 | BERTAZZO Omar | 78 |
27 | MIZBANI Ghader | 67 |
28 | JANSE VAN RENSBURG Jacques | 63 |
29 | GOOS Marc | 65 |
31 | TLEUBAYEV Ruslan | 70 |
32 | FUKUSHIMA Shinichi | 62 |
33 | CRAVEN Dan | 75 |