Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Dumoulin
1
57 kgMuravyev
2
75 kgLequatre
9
64 kgVansummeren
10
79 kgMorajko
11
65 kgLaurent
17
72 kgCoutouly
20
72 kgLoosli
23
71 kgde Kort
26
69 kgPosthuma
34
76 kgValentin
42
69 kgFritsch
46
65 kgFukushima
50
62 kgVan den Broeck
52
69 kgVan Hecke
61
69 kgTalabardon
66
67 kgDurand
73
76 kgRasch
75
72 kgDuclos-Lassalle
79
63 kgBonsergent
80
66 kgBenčík
82
73 kgDekkers
85
72 kg
1
57 kgMuravyev
2
75 kgLequatre
9
64 kgVansummeren
10
79 kgMorajko
11
65 kgLaurent
17
72 kgCoutouly
20
72 kgLoosli
23
71 kgde Kort
26
69 kgPosthuma
34
76 kgValentin
42
69 kgFritsch
46
65 kgFukushima
50
62 kgVan den Broeck
52
69 kgVan Hecke
61
69 kgTalabardon
66
67 kgDurand
73
76 kgRasch
75
72 kgDuclos-Lassalle
79
63 kgBonsergent
80
66 kgBenčík
82
73 kgDekkers
85
72 kg
Weight (KG) →
Result →
79
57
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | DUMOULIN Samuel | 57 |
2 | MURAVYEV Dmitriy | 75 |
9 | LEQUATRE Geoffroy | 64 |
10 | VANSUMMEREN Johan | 79 |
11 | MORAJKO Jacek | 65 |
17 | LAURENT Christophe | 72 |
20 | COUTOULY Cédric | 72 |
23 | LOOSLI David | 71 |
26 | DE KORT Koen | 69 |
34 | POSTHUMA Joost | 76 |
42 | VALENTIN Tristan | 69 |
46 | FRITSCH Nicolas | 65 |
50 | FUKUSHIMA Shinichi | 62 |
52 | VAN DEN BROECK Jurgen | 69 |
61 | VAN HECKE Preben | 69 |
66 | TALABARDON Yannick | 67 |
73 | DURAND Jacky | 76 |
75 | RASCH Gabriel | 72 |
79 | DUCLOS-LASSALLE Hervé | 63 |
80 | BONSERGENT Stéphane | 66 |
82 | BENČÍK Petr | 73 |
85 | DEKKERS Hans | 72 |