Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 54
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Zaballa
1
66 kgJelloul
2
58 kgPedersen
3
62 kgChaabane
5
70 kgLagab
8
63 kgHasnaoui
11
80 kgde la Fuente
17
67 kgChtioui
28
82 kgBouglas
34
71 kgBichlmann
36
72 kgMetlushenko
43
82 kgSchäfer
46
66 kgKal
50
72 kgOrr
51
74 kgBelgasem
55
68 kgSchumacher
57
71 kgSkujiņš
61
70 kg
1
66 kgJelloul
2
58 kgPedersen
3
62 kgChaabane
5
70 kgLagab
8
63 kgHasnaoui
11
80 kgde la Fuente
17
67 kgChtioui
28
82 kgBouglas
34
71 kgBichlmann
36
72 kgMetlushenko
43
82 kgSchäfer
46
66 kgKal
50
72 kgOrr
51
74 kgBelgasem
55
68 kgSchumacher
57
71 kgSkujiņš
61
70 kg
Weight (KG) →
Result →
82
58
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | ZABALLA Constantino | 66 |
2 | JELLOUL Adil | 58 |
3 | PEDERSEN Martin | 62 |
5 | CHAABANE Hichem | 70 |
8 | LAGAB Azzedine | 63 |
11 | HASNAOUI Maher | 80 |
17 | DE LA FUENTE David | 67 |
28 | CHTIOUI Rafaâ | 82 |
34 | BOUGLAS Georgios | 71 |
36 | BICHLMANN Daniel | 72 |
43 | METLUSHENKO Yuri | 82 |
46 | SCHÄFER Timo | 66 |
50 | KAL Miraç | 72 |
51 | ORR Robert | 74 |
55 | BELGASEM Ahmed Youssef | 68 |
57 | SCHUMACHER Stefan | 71 |
61 | SKUJIŅŠ Toms | 70 |