Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Van de Wouwer
1
66 kgDevolder
2
72 kgAmorison
3
70 kgSijmens
5
69 kgLeukemans
6
67 kgPopovych
9
64 kgVan Huffel
11
66 kgKessler
12
70 kgVan Petegem
13
70 kgCalvente
15
55 kgVan De Walle
16
74 kgCañada
18
65 kgSchreck
19
76 kgEeckhout
20
73 kgVan Goolen
22
70 kgKashechkin
23
70 kgGeslin
24
68 kgSchumacher
25
71 kgVansevenant
26
65 kg
1
66 kgDevolder
2
72 kgAmorison
3
70 kgSijmens
5
69 kgLeukemans
6
67 kgPopovych
9
64 kgVan Huffel
11
66 kgKessler
12
70 kgVan Petegem
13
70 kgCalvente
15
55 kgVan De Walle
16
74 kgCañada
18
65 kgSchreck
19
76 kgEeckhout
20
73 kgVan Goolen
22
70 kgKashechkin
23
70 kgGeslin
24
68 kgSchumacher
25
71 kgVansevenant
26
65 kg
Weight (KG) →
Result →
76
55
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DE WOUWER Kurt | 66 |
2 | DEVOLDER Stijn | 72 |
3 | AMORISON Frédéric | 70 |
5 | SIJMENS Nico | 69 |
6 | LEUKEMANS Björn | 67 |
9 | POPOVYCH Yaroslav | 64 |
11 | VAN HUFFEL Wim | 66 |
12 | KESSLER Matthias | 70 |
13 | VAN PETEGEM Peter | 70 |
15 | CALVENTE Manuel | 55 |
16 | VAN DE WALLE Jurgen | 74 |
18 | CAÑADA David | 65 |
19 | SCHRECK Stephan | 76 |
20 | EECKHOUT Niko | 73 |
22 | VAN GOOLEN Jurgen | 70 |
23 | KASHECHKIN Andrey | 70 |
24 | GESLIN Anthony | 68 |
25 | SCHUMACHER Stefan | 71 |
26 | VANSEVENANT Wim | 65 |