Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Habeaux
1
68 kgCappelle
2
71 kgBakelants
3
67 kgKohler
4
69 kgGallopin
5
69 kgGourgue
6
62 kgBérard
7
70 kgLevarlet
8
67 kgGalland
9
62 kgDegand
10
63 kgVan Avermaet
11
74 kgDevolder
12
72 kgSijmens
13
69 kgMangel
14
83 kgvan Vooren
15
75 kgCodol
16
67 kgDupont
17
57 kgVantomme
18
63 kgFlens
19
82 kgCusin
20
65 kgLeukemans
21
67 kgDelfosse
22
73 kgKaisen
23
82 kgCherel
24
65 kg
1
68 kgCappelle
2
71 kgBakelants
3
67 kgKohler
4
69 kgGallopin
5
69 kgGourgue
6
62 kgBérard
7
70 kgLevarlet
8
67 kgGalland
9
62 kgDegand
10
63 kgVan Avermaet
11
74 kgDevolder
12
72 kgSijmens
13
69 kgMangel
14
83 kgvan Vooren
15
75 kgCodol
16
67 kgDupont
17
57 kgVantomme
18
63 kgFlens
19
82 kgCusin
20
65 kgLeukemans
21
67 kgDelfosse
22
73 kgKaisen
23
82 kgCherel
24
65 kg
Weight (KG) →
Result →
83
57
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | HABEAUX Grégory | 68 |
2 | CAPPELLE Andy | 71 |
3 | BAKELANTS Jan | 67 |
4 | KOHLER Martin | 69 |
5 | GALLOPIN Tony | 69 |
6 | GOURGUE Benjamin | 62 |
7 | BÉRARD Julien | 70 |
8 | LEVARLET Guillaume | 67 |
9 | GALLAND Jérémie | 62 |
10 | DEGAND Thomas | 63 |
11 | VAN AVERMAET Greg | 74 |
12 | DEVOLDER Stijn | 72 |
13 | SIJMENS Nico | 69 |
14 | MANGEL Laurent | 83 |
15 | VAN VOOREN Steven | 75 |
16 | CODOL Massimo | 67 |
17 | DUPONT Hubert | 57 |
18 | VANTOMME Maxime | 63 |
19 | FLENS Rick | 82 |
20 | CUSIN Rémi | 65 |
21 | LEUKEMANS Björn | 67 |
22 | DELFOSSE Sébastien | 73 |
23 | KAISEN Olivier | 82 |
24 | CHEREL Mikaël | 65 |