Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 66
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Ramirez
1
69 kgSevilla
2
62 kgVorganov
3
65 kgAlmeida
4
63 kgChirico
5
58 kgBazhkou
6
65 kgZahiri
9
57 kgÖrken
11
69 kgBalykin
13
68 kgArango
17
62 kgVargas
18
69 kgRavanelli
19
66 kgKüçükbay
20
70 kgMihailov
21
68 kgIvashkin
26
73 kgCholakov
29
66 kgTiryaki
31
67 kgAndreev
34
63 kgSamli
36
75 kgAkdilek
40
68 kg
1
69 kgSevilla
2
62 kgVorganov
3
65 kgAlmeida
4
63 kgChirico
5
58 kgBazhkou
6
65 kgZahiri
9
57 kgÖrken
11
69 kgBalykin
13
68 kgArango
17
62 kgVargas
18
69 kgRavanelli
19
66 kgKüçükbay
20
70 kgMihailov
21
68 kgIvashkin
26
73 kgCholakov
29
66 kgTiryaki
31
67 kgAndreev
34
63 kgSamli
36
75 kgAkdilek
40
68 kg
Weight (KG) →
Result →
75
57
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | RAMIREZ Brayan Steven | 69 |
2 | SEVILLA Óscar | 62 |
3 | VORGANOV Eduard | 65 |
4 | ALMEIDA João | 63 |
5 | CHIRICO Luca | 58 |
6 | BAZHKOU Stanislau | 65 |
9 | ZAHIRI Abderrahim | 57 |
11 | ÖRKEN Ahmet | 69 |
13 | BALYKIN Ivan | 68 |
17 | ARANGO Juan Esteban | 62 |
18 | VARGAS Walter | 69 |
19 | RAVANELLI Simone | 66 |
20 | KÜÇÜKBAY Kemal | 70 |
21 | MIHAILOV Mihail | 68 |
26 | IVASHKIN Anton | 73 |
29 | CHOLAKOV Stanimir | 66 |
31 | TIRYAKI Oguzhan | 67 |
34 | ANDREEV Yordan | 63 |
36 | SAMLI Feritcan | 75 |
40 | AKDILEK Ahmet | 68 |