Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Moschetti
1
73 kgZimmermann
2
70 kgSlik
4
71 kgSchinnagel
5
68 kgOvechkin
6
61 kgKrizek
9
74 kgSefa
10
72 kgHabtom
11
65 kgLooij
12
75 kgZardini
13
62 kgFranczak
15
63 kgKoshevoy
16
62.5 kgVahtra
17
85 kgWirtgen
18
63 kgKrieger
20
71 kgRaileanu
21
63 kgRahbek
22
66 kgFortin
25
78 kg
1
73 kgZimmermann
2
70 kgSlik
4
71 kgSchinnagel
5
68 kgOvechkin
6
61 kgKrizek
9
74 kgSefa
10
72 kgHabtom
11
65 kgLooij
12
75 kgZardini
13
62 kgFranczak
15
63 kgKoshevoy
16
62.5 kgVahtra
17
85 kgWirtgen
18
63 kgKrieger
20
71 kgRaileanu
21
63 kgRahbek
22
66 kgFortin
25
78 kg
Weight (KG) →
Result →
85
61
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MOSCHETTI Matteo | 73 |
2 | ZIMMERMANN Georg | 70 |
4 | SLIK Ivar | 71 |
5 | SCHINNAGEL Johannes | 68 |
6 | OVECHKIN Artem | 61 |
9 | KRIZEK Matthias | 74 |
10 | SEFA Ylber | 72 |
11 | HABTOM Awet | 65 |
12 | LOOIJ André | 75 |
13 | ZARDINI Edoardo | 62 |
15 | FRANCZAK Paweł | 63 |
16 | KOSHEVOY Ilia | 62.5 |
17 | VAHTRA Norman | 85 |
18 | WIRTGEN Luc | 63 |
20 | KRIEGER Alexander | 71 |
21 | RAILEANU Cristian | 63 |
22 | RAHBEK Mads | 66 |
25 | FORTIN Filippo | 78 |