Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Koning
1
77 kgSamoilau
2
77 kgAït El Abdia
4
66 kgHaddi
10
63 kgAsadov
11
77 kgHoller
13
58 kgvan Engelen
14
51 kgVorganov
15
65 kgLagab
20
63 kgBichlmann
21
72 kgManakov
23
77 kgIvashkin
24
73 kgKüçükbay
25
70 kgBalkan
29
64 kgKlisurić
30
70 kgÖzgür
31
75 kgChtioui
33
82 kgErshov
35
70 kgKomin
37
63 kgSayar
42
64 kgJabrayilov
45
52 kgSteinacher
55
72 kg
1
77 kgSamoilau
2
77 kgAït El Abdia
4
66 kgHaddi
10
63 kgAsadov
11
77 kgHoller
13
58 kgvan Engelen
14
51 kgVorganov
15
65 kgLagab
20
63 kgBichlmann
21
72 kgManakov
23
77 kgIvashkin
24
73 kgKüçükbay
25
70 kgBalkan
29
64 kgKlisurić
30
70 kgÖzgür
31
75 kgChtioui
33
82 kgErshov
35
70 kgKomin
37
63 kgSayar
42
64 kgJabrayilov
45
52 kgSteinacher
55
72 kg
Weight (KG) →
Result →
82
51
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | KONING Peter | 77 |
2 | SAMOILAU Branislau | 77 |
4 | AÏT EL ABDIA Anass | 66 |
10 | HADDI Soufiane | 63 |
11 | ASADOV Elchin | 77 |
13 | HOLLER Nikodemus | 58 |
14 | VAN ENGELEN Adne | 51 |
15 | VORGANOV Eduard | 65 |
20 | LAGAB Azzedine | 63 |
21 | BICHLMANN Daniel | 72 |
23 | MANAKOV Victor | 77 |
24 | IVASHKIN Anton | 73 |
25 | KÜÇÜKBAY Kemal | 70 |
29 | BALKAN Serkan | 64 |
30 | KLISURIĆ Stevan | 70 |
31 | ÖZGÜR Batuhan | 75 |
33 | CHTIOUI Rafaâ | 82 |
35 | ERSHOV Artur | 70 |
37 | KOMIN Aleksandr | 63 |
42 | SAYAR Mustafa | 64 |
45 | JABRAYILOV Samir | 52 |
55 | STEINACHER Cyrill | 72 |