Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 29
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Gesbert
1
63 kgMcNulty
2
69 kgCras
3
65 kgFabbro
4
52 kgGibbons
5
70 kgDeclercq
6
67 kgMortier
7
66 kgMüller
8
74 kgMenten
9
68 kgGrellier
10
65 kgVan Hooydonck
11
78 kgBallerini
12
71 kgLivyns
13
58 kgNovak
14
70 kgBiermans
15
78 kgAllegaert
16
70 kgGidich
17
69 kgIrizar
18
67 kgSpengler
19
78 kgCôté
20
74 kgPlanckaert
21
69 kgRusso
22
74 kgTaminiaux
23
74 kgViejo
24
75 kg
1
63 kgMcNulty
2
69 kgCras
3
65 kgFabbro
4
52 kgGibbons
5
70 kgDeclercq
6
67 kgMortier
7
66 kgMüller
8
74 kgMenten
9
68 kgGrellier
10
65 kgVan Hooydonck
11
78 kgBallerini
12
71 kgLivyns
13
58 kgNovak
14
70 kgBiermans
15
78 kgAllegaert
16
70 kgGidich
17
69 kgIrizar
18
67 kgSpengler
19
78 kgCôté
20
74 kgPlanckaert
21
69 kgRusso
22
74 kgTaminiaux
23
74 kgViejo
24
75 kg
Weight (KG) →
Result →
78
52
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | GESBERT Élie | 63 |
2 | MCNULTY Brandon | 69 |
3 | CRAS Steff | 65 |
4 | FABBRO Matteo | 52 |
5 | GIBBONS Ryan | 70 |
6 | DECLERCQ Benjamin | 67 |
7 | MORTIER Julien | 66 |
8 | MÜLLER Patrick | 74 |
9 | MENTEN Milan | 68 |
10 | GRELLIER Fabien | 65 |
11 | VAN HOOYDONCK Nathan | 78 |
12 | BALLERINI Davide | 71 |
13 | LIVYNS Arjen | 58 |
14 | NOVAK Domen | 70 |
15 | BIERMANS Jenthe | 78 |
16 | ALLEGAERT Piet | 70 |
17 | GIDICH Yevgeniy | 69 |
18 | IRIZAR Julen | 67 |
19 | SPENGLER Lukas | 78 |
20 | CÔTÉ Pier-André | 74 |
21 | PLANCKAERT Emiel | 69 |
22 | RUSSO Clément | 74 |
23 | TAMINIAUX Lionel | 74 |
24 | VIEJO José Daniel | 75 |