Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Aniołkowski
1
68 kgKaczmarek
2
66 kgGrosu
3
68 kgKurek
4
80 kgKubiš
5
70 kgKrawczyk
6
79 kgBanaszek
7
75 kgFedorov
8
80 kgFilutás
10
68 kgDima
11
73 kgȚvetcov
13
69 kgZurlo
14
70 kgGuardini
16
66 kgBanusch
19
78 kgNikitin
20
61 kgBaroni
21
63 kgOnesti
27
71 kgPapierski
28
81 kgChzhan
29
71 kgTaebling
30
77 kgPawlak
32
81 kg
1
68 kgKaczmarek
2
66 kgGrosu
3
68 kgKurek
4
80 kgKubiš
5
70 kgKrawczyk
6
79 kgBanaszek
7
75 kgFedorov
8
80 kgFilutás
10
68 kgDima
11
73 kgȚvetcov
13
69 kgZurlo
14
70 kgGuardini
16
66 kgBanusch
19
78 kgNikitin
20
61 kgBaroni
21
63 kgOnesti
27
71 kgPapierski
28
81 kgChzhan
29
71 kgTaebling
30
77 kgPawlak
32
81 kg
Weight (KG) →
Result →
81
61
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | ANIOŁKOWSKI Stanisław | 68 |
2 | KACZMAREK Jakub | 66 |
3 | GROSU Eduard-Michael | 68 |
4 | KUREK Adrian | 80 |
5 | KUBIŠ Lukáš | 70 |
6 | KRAWCZYK Szymon | 79 |
7 | BANASZEK Norbert | 75 |
8 | FEDOROV Yevgeniy | 80 |
10 | FILUTÁS Viktor | 68 |
11 | DIMA Emil | 73 |
13 | ȚVETCOV Serghei | 69 |
14 | ZURLO Federico | 70 |
16 | GUARDINI Andrea | 66 |
19 | BANUSCH Richard | 78 |
20 | NIKITIN Matvey | 61 |
21 | BARONI Alessandro | 63 |
27 | ONESTI Emanuele | 71 |
28 | PAPIERSKI Damian | 81 |
29 | CHZHAN Igor | 71 |
30 | TAEBLING Paul | 77 |
32 | PAWLAK Tobiasz | 81 |