Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Samitier
1
63 kgQuintero
2
63 kgDima
3
73 kgVelasco
4
59 kgMajka
5
62 kgMasnada
6
65 kgReyes
7
55 kgKrizek
8
74 kgSivakov
9
70 kgCataldo
10
64 kgZeits
11
73 kgNibali
12
65 kgPoljański
13
63 kgNibali
14
65 kgThalmann
15
61 kgVuillermoz
16
60 kgBizkarra
17
53 kgRocchetti
18
72 kgGamper
20
80 kg
1
63 kgQuintero
2
63 kgDima
3
73 kgVelasco
4
59 kgMajka
5
62 kgMasnada
6
65 kgReyes
7
55 kgKrizek
8
74 kgSivakov
9
70 kgCataldo
10
64 kgZeits
11
73 kgNibali
12
65 kgPoljański
13
63 kgNibali
14
65 kgThalmann
15
61 kgVuillermoz
16
60 kgBizkarra
17
53 kgRocchetti
18
72 kgGamper
20
80 kg
Weight (KG) →
Result →
80
53
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | SAMITIER Sergio | 63 |
2 | QUINTERO Carlos | 63 |
3 | DIMA Emil | 73 |
4 | VELASCO Simone | 59 |
5 | MAJKA Rafał | 62 |
6 | MASNADA Fausto | 65 |
7 | REYES Aldemar | 55 |
8 | KRIZEK Matthias | 74 |
9 | SIVAKOV Pavel | 70 |
10 | CATALDO Dario | 64 |
11 | ZEITS Andrey | 73 |
12 | NIBALI Antonio | 65 |
13 | POLJAŃSKI Paweł | 63 |
14 | NIBALI Vincenzo | 65 |
15 | THALMANN Roland | 61 |
16 | VUILLERMOZ Alexis | 60 |
17 | BIZKARRA Mikel | 53 |
18 | ROCCHETTI Filippo | 72 |
20 | GAMPER Patrick | 80 |