Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 45
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Raimbekov
17
66 kgCiolek
19
75 kgMalacarne
21
63 kgDenifl
24
65 kgJanorschke
25
78 kgSmukulis
32
72 kgDrucker
33
75 kgMora
36
65 kgGretsch
38
69 kgKireyev
52
66 kgDurán
54
70 kgStauff
58
82 kgLudescher
61
72 kgAlarcón
69
72 kgGruzdev
77
78 kgTybor
89
72 kgTleubayev
93
70 kg
17
66 kgCiolek
19
75 kgMalacarne
21
63 kgDenifl
24
65 kgJanorschke
25
78 kgSmukulis
32
72 kgDrucker
33
75 kgMora
36
65 kgGretsch
38
69 kgKireyev
52
66 kgDurán
54
70 kgStauff
58
82 kgLudescher
61
72 kgAlarcón
69
72 kgGruzdev
77
78 kgTybor
89
72 kgTleubayev
93
70 kg
Weight (KG) →
Result →
82
63
17
93
# | Rider | Weight (KG) |
---|---|---|
17 | RAIMBEKOV Bolat | 66 |
19 | CIOLEK Gerald | 75 |
21 | MALACARNE Davide | 63 |
24 | DENIFL Stefan | 65 |
25 | JANORSCHKE Grischa | 78 |
32 | SMUKULIS Gatis | 72 |
33 | DRUCKER Jempy | 75 |
36 | MORA Arturo | 65 |
38 | GRETSCH Patrick | 69 |
52 | KIREYEV Roman | 66 |
54 | DURÁN Arkaitz | 70 |
58 | STAUFF Andreas | 82 |
61 | LUDESCHER Philipp | 72 |
69 | ALARCÓN Raúl | 72 |
77 | GRUZDEV Dmitriy | 78 |
89 | TYBOR Patrik | 72 |
93 | TLEUBAYEV Ruslan | 70 |