Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 35
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Ochoa
2
61 kgEtxeberria
3
61 kgBaillifard
5
54 kgThalmann
6
61 kgVdovin
7
62.5 kgZabala
8
61 kgRodríguez
9
63 kgTrueba
10
65 kgSamolenkov
11
71 kgThomas
12
68 kgBarbio
13
61 kgNatarov
14
68 kgLuchshenko
15
63 kgUdondo
17
69 kgLoef
18
71 kgOlaberria
19
61 kgNowak
20
68 kg
2
61 kgEtxeberria
3
61 kgBaillifard
5
54 kgThalmann
6
61 kgVdovin
7
62.5 kgZabala
8
61 kgRodríguez
9
63 kgTrueba
10
65 kgSamolenkov
11
71 kgThomas
12
68 kgBarbio
13
61 kgNatarov
14
68 kgLuchshenko
15
63 kgUdondo
17
69 kgLoef
18
71 kgOlaberria
19
61 kgNowak
20
68 kg
Weight (KG) →
Result →
71
54
2
20
# | Rider | Weight (KG) |
---|---|---|
2 | OCHOA Diego Antonio | 61 |
3 | ETXEBERRIA Víctor | 61 |
5 | BAILLIFARD Valentin | 54 |
6 | THALMANN Roland | 61 |
7 | VDOVIN Sergey | 62.5 |
8 | ZABALA Josu | 61 |
9 | RODRÍGUEZ Óscar | 63 |
10 | TRUEBA Alvaro | 65 |
11 | SAMOLENKOV Artem | 71 |
12 | THOMAS Benjamin | 68 |
13 | BARBIO António | 61 |
14 | NATAROV Yuriy | 68 |
15 | LUCHSHENKO Sergey | 63 |
17 | UDONDO Gotzon | 69 |
18 | LOEF Georg | 71 |
19 | OLABERRIA Pello | 61 |
20 | NOWAK Florian | 68 |