Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Hobbs
1
67 kgTivani
2
67 kgSchwarzbacher
3
72 kgPeña
7
56 kgVerbrugghe
11
64 kgLinarez
12
74 kgVillar
16
73 kgAntunes
17
55 kgVerstraete
18
59 kgRota
19
64 kgSilva
20
67 kgde Paula
21
63 kgGeerlings
23
72 kgGuerin
24
64 kgLozano
25
65 kgReis
26
72 kgFonte
28
60 kgCarvalho
30
66 kgLange
32
72 kgLeal
34
59 kgJuaristi
35
67.5 kgMartins
36
74 kg
1
67 kgTivani
2
67 kgSchwarzbacher
3
72 kgPeña
7
56 kgVerbrugghe
11
64 kgLinarez
12
74 kgVillar
16
73 kgAntunes
17
55 kgVerstraete
18
59 kgRota
19
64 kgSilva
20
67 kgde Paula
21
63 kgGeerlings
23
72 kgGuerin
24
64 kgLozano
25
65 kgReis
26
72 kgFonte
28
60 kgCarvalho
30
66 kgLange
32
72 kgLeal
34
59 kgJuaristi
35
67.5 kgMartins
36
74 kg
Weight (KG) →
Result →
74
55
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | HOBBS Noah | 67 |
2 | TIVANI German Nicolás | 67 |
3 | SCHWARZBACHER Matthias | 72 |
7 | PEÑA Jesús David | 56 |
11 | VERBRUGGHE Jens | 64 |
12 | LINAREZ Leangel Rubén | 74 |
16 | VILLAR Iker | 73 |
17 | ANTUNES Tiago | 55 |
18 | VERSTRAETE Jenthe | 59 |
19 | ROTA Raúl | 64 |
20 | SILVA Pedro | 67 |
21 | DE PAULA Victor Cesar | 63 |
23 | GEERLINGS Sergio | 72 |
24 | GUERIN Alexis | 64 |
25 | LOZANO Juan Pedro | 65 |
26 | REIS Rafael | 72 |
28 | FONTE César | 60 |
30 | CARVALHO André | 66 |
32 | LANGE Colby | 72 |
34 | LEAL Tiago | 59 |
35 | JUARISTI Txomin | 67.5 |
36 | MARTINS João | 74 |