Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Formolo
1
62 kgSoler
2
68 kgBenoot
3
72 kgQuintana
4
58 kgBuchmann
5
59 kgNych
6
74 kgHenao
7
57 kgSilva
8
66 kgvan Baarle
9
78 kgBico
10
64 kgArslanov
11
63 kgKozhatayev
12
62 kgReis
13
72 kgInsausti
14
89 kgBauhaus
16
75 kgAyazbayev
17
75 kgRodrigues
18
60 kgVakoč
19
68 kgKerkhof
20
76 kgStash
21
77 kgCoutinho
22
68 kgMagalhaes
23
70 kgRibeiro
24
66.5 kg
1
62 kgSoler
2
68 kgBenoot
3
72 kgQuintana
4
58 kgBuchmann
5
59 kgNych
6
74 kgHenao
7
57 kgSilva
8
66 kgvan Baarle
9
78 kgBico
10
64 kgArslanov
11
63 kgKozhatayev
12
62 kgReis
13
72 kgInsausti
14
89 kgBauhaus
16
75 kgAyazbayev
17
75 kgRodrigues
18
60 kgVakoč
19
68 kgKerkhof
20
76 kgStash
21
77 kgCoutinho
22
68 kgMagalhaes
23
70 kgRibeiro
24
66.5 kg
Weight (KG) →
Result →
89
57
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | FORMOLO Davide | 62 |
2 | SOLER Marc | 68 |
3 | BENOOT Tiesj | 72 |
4 | QUINTANA Dayer | 58 |
5 | BUCHMANN Emanuel | 59 |
6 | NYCH Artem | 74 |
7 | HENAO Sebastián | 57 |
8 | SILVA Joaquim | 66 |
9 | VAN BAARLE Dylan | 78 |
10 | BICO Nuno | 64 |
11 | ARSLANOV Ildar | 63 |
12 | KOZHATAYEV Bakhtiyar | 62 |
13 | REIS Rafael | 72 |
14 | INSAUSTI Jon Ander | 89 |
16 | BAUHAUS Phil | 75 |
17 | AYAZBAYEV Maxat | 75 |
18 | RODRIGUES João | 60 |
19 | VAKOČ Petr | 68 |
20 | KERKHOF Tim | 76 |
21 | STASH Mamyr | 77 |
22 | COUTINHO Leonel | 68 |
23 | MAGALHAES Samuel | 70 |
24 | RIBEIRO Carlos | 66.5 |