Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Induráin
1
76 kgEscartín
2
61 kgZarrabeitia
5
63 kgBlanco
6
66 kgSerrano
7
63 kgArrieta
9
68 kgEtxebarria
10
55 kgLópez de Munain
14
65 kgCabello
31
72 kgMoos
34
64 kgLaiseka
35
63 kgCañada
36
65 kgMori
42
77 kgBarbosa
43
72 kgDiaz
45
55 kgSmetanine
48
69 kgPoli
49
87 kgApollonio
52
70 kgGamito
53
66 kgFornaciari
55
80 kgEtxebarria
60
68 kgKlier
65
72 kgPetacchi
66
70 kg
1
76 kgEscartín
2
61 kgZarrabeitia
5
63 kgBlanco
6
66 kgSerrano
7
63 kgArrieta
9
68 kgEtxebarria
10
55 kgLópez de Munain
14
65 kgCabello
31
72 kgMoos
34
64 kgLaiseka
35
63 kgCañada
36
65 kgMori
42
77 kgBarbosa
43
72 kgDiaz
45
55 kgSmetanine
48
69 kgPoli
49
87 kgApollonio
52
70 kgGamito
53
66 kgFornaciari
55
80 kgEtxebarria
60
68 kgKlier
65
72 kgPetacchi
66
70 kg
Weight (KG) →
Result →
87
55
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | INDURÁIN Miguel | 76 |
2 | ESCARTÍN Fernando | 61 |
5 | ZARRABEITIA Mikel | 63 |
6 | BLANCO Santiago | 66 |
7 | SERRANO Marcos Antonio | 63 |
9 | ARRIETA José Luis | 68 |
10 | ETXEBARRIA David | 55 |
14 | LÓPEZ DE MUNAIN Alberto | 65 |
31 | CABELLO Francisco | 72 |
34 | MOOS Alexandre | 64 |
35 | LAISEKA Roberto | 63 |
36 | CAÑADA David | 65 |
42 | MORI Massimiliano | 77 |
43 | BARBOSA Cândido | 72 |
45 | DIAZ Rafael | 55 |
48 | SMETANINE Serguei | 69 |
49 | POLI Eros | 87 |
52 | APOLLONIO Massimo | 70 |
53 | GAMITO Vitor | 66 |
55 | FORNACIARI Paolo | 80 |
60 | ETXEBARRIA Unai | 68 |
65 | KLIER Andreas | 72 |
66 | PETACCHI Alessandro | 70 |