Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Rodriguez
1
68 kgFraser
2
71 kgHincapie
3
83 kgVogels
5
75 kgMickiewicz
7
74 kgCommesso
9
66 kgCruz
12
66 kgDean
14
72 kgZamana
18
74 kgGilmore
28
67 kgBrandt
30
66 kgLandis
31
68 kgLupeikis
33
80 kgAndriotto
35
68 kgJoachim
36
82 kgHulsmans
39
75 kgHoste
40
80 kgPiil
46
65 kgJemison
49
71 kgVillatoro
50
65 kg
1
68 kgFraser
2
71 kgHincapie
3
83 kgVogels
5
75 kgMickiewicz
7
74 kgCommesso
9
66 kgCruz
12
66 kgDean
14
72 kgZamana
18
74 kgGilmore
28
67 kgBrandt
30
66 kgLandis
31
68 kgLupeikis
33
80 kgAndriotto
35
68 kgJoachim
36
82 kgHulsmans
39
75 kgHoste
40
80 kgPiil
46
65 kgJemison
49
71 kgVillatoro
50
65 kg
Weight (KG) →
Result →
83
65
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | RODRIGUEZ Fred | 68 |
2 | FRASER Gordon | 71 |
3 | HINCAPIE George | 83 |
5 | VOGELS Henk | 75 |
7 | MICKIEWICZ Jacek | 74 |
9 | COMMESSO Salvatore | 66 |
12 | CRUZ Antonio | 66 |
14 | DEAN Julian | 72 |
18 | ZAMANA Cezary | 74 |
28 | GILMORE Matthew | 67 |
30 | BRANDT Christophe | 66 |
31 | LANDIS Floyd | 68 |
33 | LUPEIKIS Remigius | 80 |
35 | ANDRIOTTO Dario | 68 |
36 | JOACHIM Benoît | 82 |
39 | HULSMANS Kevin | 75 |
40 | HOSTE Leif | 80 |
46 | PIIL Jakob Storm | 65 |
49 | JEMISON Marty | 71 |
50 | VILLATORO Anton | 65 |