Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Hosking
1
60 kgWilliams
2
60 kgRowe
3
65 kgRoy
5
66 kgBarker
7
56 kgSimmonds
10
55 kgChristoforou
11
53 kgVillumsen
12
59 kgGarfoot
13
56 kgLooser
15
57 kgVan Twisk
16
53 kgVorster
21
57 kgElvin
22
63 kgArchibald
23
75 kgRoorda
25
70 kgBeveridge
29
62 kgHalbwachs
33
62 kg
1
60 kgWilliams
2
60 kgRowe
3
65 kgRoy
5
66 kgBarker
7
56 kgSimmonds
10
55 kgChristoforou
11
53 kgVillumsen
12
59 kgGarfoot
13
56 kgLooser
15
57 kgVan Twisk
16
53 kgVorster
21
57 kgElvin
22
63 kgArchibald
23
75 kgRoorda
25
70 kgBeveridge
29
62 kgHalbwachs
33
62 kg
Weight (KG) →
Result →
75
53
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | HOSKING Chloe | 60 |
2 | WILLIAMS Georgia | 60 |
3 | ROWE Danielle | 65 |
5 | ROY Sarah | 66 |
7 | BARKER Elinor | 56 |
10 | SIMMONDS Hayley | 55 |
11 | CHRISTOFOROU Antri | 53 |
12 | VILLUMSEN Linda | 59 |
13 | GARFOOT Katrin | 56 |
15 | LOOSER Vera | 57 |
16 | VAN TWISK Abigail | 53 |
21 | VORSTER Michelle | 57 |
22 | ELVIN Gracie | 63 |
23 | ARCHIBALD Katie | 75 |
25 | ROORDA Stephanie | 70 |
29 | BEVERIDGE Allison | 62 |
33 | HALBWACHS Aurelie | 62 |