Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vandenbulcke
2
60 kgDruyts
6
62 kgTruyen
7
55 kgDelbaere
11
51 kgvan Houtum
12
55 kgMartins
13
61 kgDocx
15
52 kgVan Loy
35
65 kgTacey
41
62 kgvan Alphen
43
51 kgvan Agt
49
54 kgBerton
54
59 kgPeeters
66
54 kgvan der Molen
87
58 kgPikulik
104
54 kgVerdonschot
106
52 kgSels
107
65 kg
2
60 kgDruyts
6
62 kgTruyen
7
55 kgDelbaere
11
51 kgvan Houtum
12
55 kgMartins
13
61 kgDocx
15
52 kgVan Loy
35
65 kgTacey
41
62 kgvan Alphen
43
51 kgvan Agt
49
54 kgBerton
54
59 kgPeeters
66
54 kgvan der Molen
87
58 kgPikulik
104
54 kgVerdonschot
106
52 kgSels
107
65 kg
Weight (KG) →
Result →
65
51
2
107
# | Rider | Weight (KG) |
---|---|---|
2 | VANDENBULCKE Jesse | 60 |
6 | DRUYTS Kelly | 62 |
7 | TRUYEN Marthe | 55 |
11 | DELBAERE Fien | 51 |
12 | VAN HOUTUM Céline | 55 |
13 | MARTINS Maria | 61 |
15 | DOCX Mieke | 52 |
35 | VAN LOY Ellen | 65 |
41 | TACEY April | 62 |
43 | VAN ALPHEN Aniek | 51 |
49 | VAN AGT Eva | 54 |
54 | BERTON Nina | 59 |
66 | PEETERS Jinse | 54 |
87 | VAN DER MOLEN Yuli | 58 |
104 | PIKULIK Daria | 54 |
106 | VERDONSCHOT Laura | 52 |
107 | SELS Loes | 65 |