Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Martias
1
71 kgJégou
2
71 kgBonsergent
3
66 kgBernaudeau
4
62 kgVanlandschoot
6
67 kgCherel
7
65 kgVantomme
9
63 kgRoux
10
73 kgFinot
12
65 kgDelpech
13
72 kgLevarlet
14
67 kgThomson
15
75 kgDuret
16
62 kgClaude
17
69 kgHabeaux
19
68 kgJelloul
23
58 kgBelgasem
24
68 kgTurgot
26
73 kgLahsaini
33
77 kgDi Grégorio
35
67 kg
1
71 kgJégou
2
71 kgBonsergent
3
66 kgBernaudeau
4
62 kgVanlandschoot
6
67 kgCherel
7
65 kgVantomme
9
63 kgRoux
10
73 kgFinot
12
65 kgDelpech
13
72 kgLevarlet
14
67 kgThomson
15
75 kgDuret
16
62 kgClaude
17
69 kgHabeaux
19
68 kgJelloul
23
58 kgBelgasem
24
68 kgTurgot
26
73 kgLahsaini
33
77 kgDi Grégorio
35
67 kg
Weight (KG) →
Result →
77
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | MARTIAS Rony | 71 |
2 | JÉGOU Lilian | 71 |
3 | BONSERGENT Stéphane | 66 |
4 | BERNAUDEAU Giovanni | 62 |
6 | VANLANDSCHOOT James | 67 |
7 | CHEREL Mikaël | 65 |
9 | VANTOMME Maxime | 63 |
10 | ROUX Anthony | 73 |
12 | FINOT Frédéric | 65 |
13 | DELPECH Jean-Luc | 72 |
14 | LEVARLET Guillaume | 67 |
15 | THOMSON Jay Robert | 75 |
16 | DURET Sébastien | 62 |
17 | CLAUDE Mathieu | 69 |
19 | HABEAUX Grégory | 68 |
23 | JELLOUL Adil | 58 |
24 | BELGASEM Ahmed Youssef | 68 |
26 | TURGOT Sébastien | 73 |
33 | LAHSAINI Mouhssine | 77 |
35 | DI GRÉGORIO Rémy | 67 |