Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Viviani
1
67 kgMcEwen
2
67 kgHunter
4
72 kgKirsipuu
7
80 kgVerschoor
10
74.5 kgMcEvoy
11
67 kgGruzdev
14
78 kgBiałobłocki
15
79 kgIlias
19
69 kgCalabria
24
55 kgOjavee
32
80 kgBoillat
36
68 kgOliphant
39
66 kgMarangoni
42
74 kgBewley
43
81 kgFinetto
45
62 kgKhalmuratov
46
68 kgDall'Antonia
47
70 kg
1
67 kgMcEwen
2
67 kgHunter
4
72 kgKirsipuu
7
80 kgVerschoor
10
74.5 kgMcEvoy
11
67 kgGruzdev
14
78 kgBiałobłocki
15
79 kgIlias
19
69 kgCalabria
24
55 kgOjavee
32
80 kgBoillat
36
68 kgOliphant
39
66 kgMarangoni
42
74 kgBewley
43
81 kgFinetto
45
62 kgKhalmuratov
46
68 kgDall'Antonia
47
70 kg
Weight (KG) →
Result →
81
55
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | VIVIANI Elia | 67 |
2 | MCEWEN Robbie | 67 |
4 | HUNTER Robert | 72 |
7 | KIRSIPUU Jaan | 80 |
10 | VERSCHOOR Martijn | 74.5 |
11 | MCEVOY Jonathan | 67 |
14 | GRUZDEV Dmitriy | 78 |
15 | BIAŁOBŁOCKI Marcin | 79 |
19 | ILIAS Periklis | 69 |
24 | CALABRIA Fabio | 55 |
32 | OJAVEE Mart | 80 |
36 | BOILLAT Joris | 68 |
39 | OLIPHANT Evan | 66 |
42 | MARANGONI Alan | 74 |
43 | BEWLEY Sam | 81 |
45 | FINETTO Mauro | 62 |
46 | KHALMURATOV Muradjan | 68 |
47 | DALL'ANTONIA Tiziano | 70 |