Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Rogers
2
74 kgHansen
3
72 kgMeyer
4
70 kgWilson
5
72 kgLloyd
6
62 kgMenzies
7
86 kgClarke
8
63 kgHayman
9
78 kgSutton
10
67 kgSulzberger
11
65 kgSulzberger
14
67 kgLapthorne
15
70 kgSutherland
16
75 kgClarke
17
70 kgPorte
24
62 kgWurf
25
71 kgCooke
26
75 kgClarke
27
68 kgOliphant
28
66 kgBates
29
61 kgDavis
35
73 kgPeterson
39
67 kg
2
74 kgHansen
3
72 kgMeyer
4
70 kgWilson
5
72 kgLloyd
6
62 kgMenzies
7
86 kgClarke
8
63 kgHayman
9
78 kgSutton
10
67 kgSulzberger
11
65 kgSulzberger
14
67 kgLapthorne
15
70 kgSutherland
16
75 kgClarke
17
70 kgPorte
24
62 kgWurf
25
71 kgCooke
26
75 kgClarke
27
68 kgOliphant
28
66 kgBates
29
61 kgDavis
35
73 kgPeterson
39
67 kg
Weight (KG) →
Result →
86
61
2
39
# | Rider | Weight (KG) |
---|---|---|
2 | ROGERS Michael | 74 |
3 | HANSEN Adam | 72 |
4 | MEYER Cameron | 70 |
5 | WILSON Matthew | 72 |
6 | LLOYD Matthew | 62 |
7 | MENZIES Karl | 86 |
8 | CLARKE Simon | 63 |
9 | HAYMAN Mathew | 78 |
10 | SUTTON Chris | 67 |
11 | SULZBERGER Wesley | 65 |
14 | SULZBERGER Bernard | 67 |
15 | LAPTHORNE Darren | 70 |
16 | SUTHERLAND Rory | 75 |
17 | CLARKE Hilton | 70 |
24 | PORTE Richie | 62 |
25 | WURF Cameron | 71 |
26 | COOKE Baden | 75 |
27 | CLARKE Jonathan | 68 |
28 | OLIPHANT Evan | 66 |
29 | BATES Gene | 61 |
35 | DAVIS Allan | 73 |
39 | PETERSON Cameron | 67 |