Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
D'hoore
1
63 kgKopecky
2
66 kgDruyts
3
62 kgCant
4
57 kgVandenbroucke
7
63 kgVan Loy
10
65 kgVerdonschot
11
52 kgFranck
12
51 kgde Baat
13
56 kgDocx
14
52 kgSels
16
65 kgHannes
18
51 kgBeckers
24
67 kgDuyck
30
60 kgDemey
32
56 kgMcNally - de Quint
34
56 kgPolspoel
35
59 kgVan de Velde
40
58 kg
1
63 kgKopecky
2
66 kgDruyts
3
62 kgCant
4
57 kgVandenbroucke
7
63 kgVan Loy
10
65 kgVerdonschot
11
52 kgFranck
12
51 kgde Baat
13
56 kgDocx
14
52 kgSels
16
65 kgHannes
18
51 kgBeckers
24
67 kgDuyck
30
60 kgDemey
32
56 kgMcNally - de Quint
34
56 kgPolspoel
35
59 kgVan de Velde
40
58 kg
Weight (KG) →
Result →
67
51
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | D'HOORE Jolien | 63 |
2 | KOPECKY Lotte | 66 |
3 | DRUYTS Kelly | 62 |
4 | CANT Sanne | 57 |
7 | VANDENBROUCKE Saartje | 63 |
10 | VAN LOY Ellen | 65 |
11 | VERDONSCHOT Laura | 52 |
12 | FRANCK Alicia | 51 |
13 | DE BAAT Kim | 56 |
14 | DOCX Mieke | 52 |
16 | SELS Loes | 65 |
18 | HANNES Kaat | 51 |
24 | BECKERS Isabelle | 67 |
30 | DUYCK Ann-Sophie | 60 |
32 | DEMEY Valerie | 56 |
34 | MCNALLY - DE QUINT Pia | 56 |
35 | POLSPOEL Maaike | 59 |
40 | VAN DE VELDE Julie | 58 |