Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Price-Pejtersen
1
83 kgBjerg
2
78 kgNorsgaard
3
88 kgSkjelmose
4
65 kgHulgaard
5
73 kgLarsen
7
74 kgKron
8
63 kgHindsgaul
11
67 kgEgholm
13
69 kgSander Hansen
14
68 kgJensen
15
75 kgLarsen
19
72 kgAndersen
20
56 kgWacker
24
68 kgHøiberg Klinke
28
65 kgStokbro
29
70 kgStigaard
34
74 kg
1
83 kgBjerg
2
78 kgNorsgaard
3
88 kgSkjelmose
4
65 kgHulgaard
5
73 kgLarsen
7
74 kgKron
8
63 kgHindsgaul
11
67 kgEgholm
13
69 kgSander Hansen
14
68 kgJensen
15
75 kgLarsen
19
72 kgAndersen
20
56 kgWacker
24
68 kgHøiberg Klinke
28
65 kgStokbro
29
70 kgStigaard
34
74 kg
Weight (KG) →
Result →
88
56
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | PRICE-PEJTERSEN Johan | 83 |
2 | BJERG Mikkel | 78 |
3 | NORSGAARD Mathias | 88 |
4 | SKJELMOSE Mattias | 65 |
5 | HULGAARD Morten | 73 |
7 | LARSEN Niklas | 74 |
8 | KRON Andreas | 63 |
11 | HINDSGAUL Jacob | 67 |
13 | EGHOLM Jakob | 69 |
14 | SANDER HANSEN Marcus | 68 |
15 | JENSEN Frederik Irgens | 75 |
19 | LARSEN Mathias Alexander Erik | 72 |
20 | ANDERSEN Sander | 56 |
24 | WACKER Ludvig Anton | 68 |
28 | HØIBERG KLINKE Mads | 65 |
29 | STOKBRO Andreas | 70 |
34 | STIGAARD Rasmus | 74 |