Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Politt
1
80 kgSchachmann
2
71 kgSteimle
4
73 kgWalscheid
5
90 kgHerzog
6
74 kgBrenner
7
59 kgBuck-Gramcko
9
76 kgWolf
10
85 kgHeinrich
12
76 kgDik
14
77 kgPeter
15
63 kgHuppertz
20
66 kgMattheis
21
66 kgRöber
23
68 kgBraun
25
76 kgKierok
28
70 kgAlbrecht
31
71 kgNolde
34
79 kgPlambeck
38
68 kgWehde
40
79 kgLutter
42
65 kgMünzer
55
71 kg
1
80 kgSchachmann
2
71 kgSteimle
4
73 kgWalscheid
5
90 kgHerzog
6
74 kgBrenner
7
59 kgBuck-Gramcko
9
76 kgWolf
10
85 kgHeinrich
12
76 kgDik
14
77 kgPeter
15
63 kgHuppertz
20
66 kgMattheis
21
66 kgRöber
23
68 kgBraun
25
76 kgKierok
28
70 kgAlbrecht
31
71 kgNolde
34
79 kgPlambeck
38
68 kgWehde
40
79 kgLutter
42
65 kgMünzer
55
71 kg
Weight (KG) →
Result →
90
59
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | POLITT Nils | 80 |
2 | SCHACHMANN Maximilian | 71 |
4 | STEIMLE Jannik | 73 |
5 | WALSCHEID Max | 90 |
6 | HERZOG Emil | 74 |
7 | BRENNER Marco | 59 |
9 | BUCK-GRAMCKO Tobias | 76 |
10 | WOLF Justin | 85 |
12 | HEINRICH Nicolas | 76 |
14 | DIK Calvin | 77 |
15 | PETER Jannis | 63 |
20 | HUPPERTZ Joshua | 66 |
21 | MATTHEIS Oliver | 66 |
23 | RÖBER Dominik | 68 |
25 | BRAUN Julian | 76 |
28 | KIEROK Daniel | 70 |
31 | ALBRECHT Anton | 71 |
34 | NOLDE Tobias | 79 |
38 | PLAMBECK Moritz | 68 |
40 | WEHDE Aaron | 79 |
42 | LUTTER Eric | 65 |
55 | MÜNZER Jan | 71 |