Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
van Baarle
1
78 kgTerpstra
2
75 kgKelderman
3
65 kgBeukeboom
4
88 kgvan Emden
5
78 kgEenkhoorn
6
72 kgTusveld
7
70 kgKoning
8
77 kgRiesebeek
9
78 kgvan Goethem
11
77 kgvan Zandbeek
12
72 kgHavik
13
73 kgGerts
19
71 kgOostra
23
68 kgZijlaard
24
73 kgHandgraaf
25
66 kgOnderwater
37
72 kg
1
78 kgTerpstra
2
75 kgKelderman
3
65 kgBeukeboom
4
88 kgvan Emden
5
78 kgEenkhoorn
6
72 kgTusveld
7
70 kgKoning
8
77 kgRiesebeek
9
78 kgvan Goethem
11
77 kgvan Zandbeek
12
72 kgHavik
13
73 kgGerts
19
71 kgOostra
23
68 kgZijlaard
24
73 kgHandgraaf
25
66 kgOnderwater
37
72 kg
Weight (KG) →
Result →
88
65
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | VAN BAARLE Dylan | 78 |
2 | TERPSTRA Niki | 75 |
3 | KELDERMAN Wilco | 65 |
4 | BEUKEBOOM Dion | 88 |
5 | VAN EMDEN Jos | 78 |
6 | EENKHOORN Pascal | 72 |
7 | TUSVELD Martijn | 70 |
8 | KONING Peter | 77 |
9 | RIESEBEEK Oscar | 78 |
11 | VAN GOETHEM Brian | 77 |
12 | VAN ZANDBEEK Ronan | 72 |
13 | HAVIK Piotr | 73 |
19 | GERTS Floris | 71 |
23 | OOSTRA Folkert | 68 |
24 | ZIJLAARD Maikel | 73 |
25 | HANDGRAAF Sjors | 66 |
37 | ONDERWATER Coen | 72 |