Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 122
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
van den Berg
2
78 kgBouwmans
4
64 kgVeltman
9
66 kgBax
10
78 kgMaas
13
70 kgJakobsen
16
78 kgWelten
17
81 kgTalen
19
76 kgTimmermans
23
72 kgMengoulas
26
66 kgCeli
28
76 kgWolffenbuttel
56
79 kgBoele
66
76 kgKroeze
72
63 kgJansen
74
63 kgde Vries
75
66 kgEenkhoorn
82
72 kgInkelaar
83
64 kgVan Der Velde
85
79 kgHaaksman
87
73 kgWouters
107
67 kgSnel
110
76 kgKooistra
115
74 kg
2
78 kgBouwmans
4
64 kgVeltman
9
66 kgBax
10
78 kgMaas
13
70 kgJakobsen
16
78 kgWelten
17
81 kgTalen
19
76 kgTimmermans
23
72 kgMengoulas
26
66 kgCeli
28
76 kgWolffenbuttel
56
79 kgBoele
66
76 kgKroeze
72
63 kgJansen
74
63 kgde Vries
75
66 kgEenkhoorn
82
72 kgInkelaar
83
64 kgVan Der Velde
85
79 kgHaaksman
87
73 kgWouters
107
67 kgSnel
110
76 kgKooistra
115
74 kg
Weight (KG) →
Result →
81
63
2
115
# | Rider | Weight (KG) |
---|---|---|
2 | VAN DEN BERG Julius | 78 |
4 | BOUWMANS Dylan | 64 |
9 | VELTMAN Milan | 66 |
10 | BAX Sjoerd | 78 |
13 | MAAS Jan | 70 |
16 | JAKOBSEN Fabio | 78 |
17 | WELTEN Bram | 81 |
19 | TALEN Jordi | 76 |
23 | TIMMERMANS Justin | 72 |
26 | MENGOULAS Alex | 66 |
28 | CELI Abe | 76 |
56 | WOLFFENBUTTEL Nils | 79 |
66 | BOELE Bastijn | 76 |
72 | KROEZE Danny | 63 |
74 | JANSEN Tom | 63 |
75 | DE VRIES Hartthijs | 66 |
82 | EENKHOORN Pascal | 72 |
83 | INKELAAR Kevin | 64 |
85 | VAN DER VELDE Jurjen | 79 |
87 | HAAKSMAN Max | 73 |
107 | WOUTERS Sieben | 67 |
110 | SNEL Tijmen | 76 |
115 | KOOISTRA Marten | 74 |