Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 196
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Abma
1
86 kgHuitema
3
66 kgVergouw
7
73 kgSchaper
8
69 kgvan Dorp
12
76 kgDuba
13
85 kgGrömmel
29
70 kgWillemsen
35
80 kgJurriaans
36
70 kgvan Zuidam
53
63 kgVlot
59
57 kgVeenings
64
79 kgBrethouwer
70
69 kgvan der Meulen
74
67 kgvan der Linden
77
73 kgvan den Eijnden
78
63 kgToussaint
81
64 kgSetz
83
65 kgRoks
84
60 kg
1
86 kgHuitema
3
66 kgVergouw
7
73 kgSchaper
8
69 kgvan Dorp
12
76 kgDuba
13
85 kgGrömmel
29
70 kgWillemsen
35
80 kgJurriaans
36
70 kgvan Zuidam
53
63 kgVlot
59
57 kgVeenings
64
79 kgBrethouwer
70
69 kgvan der Meulen
74
67 kgvan der Linden
77
73 kgvan den Eijnden
78
63 kgToussaint
81
64 kgSetz
83
65 kgRoks
84
60 kg
Weight (KG) →
Result →
86
57
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | ABMA Elmar | 86 |
3 | HUITEMA Jasper | 66 |
7 | VERGOUW Julian | 73 |
8 | SCHAPER Marijn | 69 |
12 | VAN DORP Vincent | 76 |
13 | DUBA Maxime | 85 |
29 | GRÖMMEL Rens | 70 |
35 | WILLEMSEN Justus | 80 |
36 | JURRIAANS Daan | 70 |
53 | VAN ZUIDAM Bas | 63 |
59 | VLOT Mees | 57 |
64 | VEENINGS Pepijn | 79 |
70 | BRETHOUWER Yorick | 69 |
74 | VAN DER MEULEN Max | 67 |
77 | VAN DER LINDEN Sjoerd | 73 |
78 | VAN DEN EIJNDEN Guus | 63 |
81 | TOUSSAINT Wouter | 64 |
83 | SETZ Ramon | 65 |
84 | ROKS Jelle | 60 |