Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
van Zandbeek
1
72 kgvan Winden
3
70 kgAriesen
5
70 kgLigthart
6
72 kgGmelich Meijling
7
77 kgLindeman
8
69 kgvan Amerongen
9
70 kgvan Poppel
12
78 kgde Baat
13
66 kgKreder
14
67 kgKreder
15
70 kgRuijgh
18
64 kgTerpstra
24
64 kgVermeltfoort
29
85 kgKeizer
32
72 kgAtzori
36
72 kgvan Diermen
38
69 kgSlagter
46
57 kgChaigneau
47
80 kgSinkeldam
48
77 kg
1
72 kgvan Winden
3
70 kgAriesen
5
70 kgLigthart
6
72 kgGmelich Meijling
7
77 kgLindeman
8
69 kgvan Amerongen
9
70 kgvan Poppel
12
78 kgde Baat
13
66 kgKreder
14
67 kgKreder
15
70 kgRuijgh
18
64 kgTerpstra
24
64 kgVermeltfoort
29
85 kgKeizer
32
72 kgAtzori
36
72 kgvan Diermen
38
69 kgSlagter
46
57 kgChaigneau
47
80 kgSinkeldam
48
77 kg
Weight (KG) →
Result →
85
57
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | VAN ZANDBEEK Ronan | 72 |
3 | VAN WINDEN Dennis | 70 |
5 | ARIESEN Johim | 70 |
6 | LIGTHART Pim | 72 |
7 | GMELICH MEIJLING Jarno | 77 |
8 | LINDEMAN Bert-Jan | 69 |
9 | VAN AMERONGEN Thijs | 70 |
12 | VAN POPPEL Boy | 78 |
13 | DE BAAT Arjen | 66 |
14 | KREDER Michel | 67 |
15 | KREDER Raymond | 70 |
18 | RUIJGH Rob | 64 |
24 | TERPSTRA Mike | 64 |
29 | VERMELTFOORT Coen | 85 |
32 | KEIZER Martijn | 72 |
36 | ATZORI Umberto | 72 |
38 | VAN DIERMEN Johnny | 69 |
46 | SLAGTER Tom-Jelte | 57 |
47 | CHAIGNEAU Robin | 80 |
48 | SINKELDAM Ramon | 77 |