Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Dewulf
1
74 kgSteimle
2
73 kgHuys
3
61 kgDe Pestel
4
74 kgRüegg
6
66 kgVan Poucke
8
68 kgBais
10
66 kgColman
11
73 kgEinhorn
13
72 kgPetruš
14
64 kgMarit
15
72 kgPodlaski
16
68 kgBanaszek
17
75 kgAbu-Fares
19
67 kgŠtibingr
25
62 kgBen Moshe
26
61 kgLašinis
27
69 kgBakus
28
68 kgJakoubek
32
72 kgAniołkowski
33
68 kgPassfield
36
70 kg
1
74 kgSteimle
2
73 kgHuys
3
61 kgDe Pestel
4
74 kgRüegg
6
66 kgVan Poucke
8
68 kgBais
10
66 kgColman
11
73 kgEinhorn
13
72 kgPetruš
14
64 kgMarit
15
72 kgPodlaski
16
68 kgBanaszek
17
75 kgAbu-Fares
19
67 kgŠtibingr
25
62 kgBen Moshe
26
61 kgLašinis
27
69 kgBakus
28
68 kgJakoubek
32
72 kgAniołkowski
33
68 kgPassfield
36
70 kg
Weight (KG) →
Result →
75
61
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | DEWULF Stan | 74 |
2 | STEIMLE Jannik | 73 |
3 | HUYS Laurens | 61 |
4 | DE PESTEL Sander | 74 |
6 | RÜEGG Lukas | 66 |
8 | VAN POUCKE Aaron | 68 |
10 | BAIS Mattia | 66 |
11 | COLMAN Alex | 73 |
13 | EINHORN Itamar | 72 |
14 | PETRUŠ Jiří | 64 |
15 | MARIT Arne | 72 |
16 | PODLASKI Michał | 68 |
17 | BANASZEK Norbert | 75 |
19 | ABU-FARES Saned | 67 |
25 | ŠTIBINGR Matěj | 62 |
26 | BEN MOSHE Yuval | 61 |
27 | LAŠINIS Venantas | 69 |
28 | BAKUS Tomáš | 68 |
32 | JAKOUBEK Tomáš | 72 |
33 | ANIOŁKOWSKI Stanisław | 68 |
36 | PASSFIELD Charlie | 70 |