Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Pedersen
1
62 kgDekkers
3
72 kgMaaskant
4
76 kgde Maar
7
70 kgHeijboer
8
78 kgvan Hummel
9
64 kgMatysiak
10
71 kgClement
11
66 kgKozontchuk
12
75 kgRooijakkers
13
68 kgMørkøv
14
71 kgHoogerland
18
65 kgElijzen
19
80 kgLangeveld
20
67 kgFlens
24
82 kgTaciak
30
68 kgHonig
32
61 kgBagdonas
34
78 kgvan Groen
35
69 kgTerpstra
39
75 kgMol
41
83 kgGesink
42
70 kg
1
62 kgDekkers
3
72 kgMaaskant
4
76 kgde Maar
7
70 kgHeijboer
8
78 kgvan Hummel
9
64 kgMatysiak
10
71 kgClement
11
66 kgKozontchuk
12
75 kgRooijakkers
13
68 kgMørkøv
14
71 kgHoogerland
18
65 kgElijzen
19
80 kgLangeveld
20
67 kgFlens
24
82 kgTaciak
30
68 kgHonig
32
61 kgBagdonas
34
78 kgvan Groen
35
69 kgTerpstra
39
75 kgMol
41
83 kgGesink
42
70 kg
Weight (KG) →
Result →
83
61
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Martin | 62 |
3 | DEKKERS Hans | 72 |
4 | MAASKANT Martijn | 76 |
7 | DE MAAR Marc | 70 |
8 | HEIJBOER Mathieu | 78 |
9 | VAN HUMMEL Kenny | 64 |
10 | MATYSIAK Bartłomiej | 71 |
11 | CLEMENT Stef | 66 |
12 | KOZONTCHUK Dmitry | 75 |
13 | ROOIJAKKERS Piet | 68 |
14 | MØRKØV Michael | 71 |
18 | HOOGERLAND Johnny | 65 |
19 | ELIJZEN Michiel | 80 |
20 | LANGEVELD Sebastian | 67 |
24 | FLENS Rick | 82 |
30 | TACIAK Mateusz | 68 |
32 | HONIG Reinier | 61 |
34 | BAGDONAS Gediminas | 78 |
35 | VAN GROEN Arnoud | 69 |
39 | TERPSTRA Niki | 75 |
41 | MOL Wouter | 83 |
42 | GESINK Robert | 70 |