Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 80
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Boom
1
75 kgTraksel
2
72 kgTombak
3
71 kgOmloop
4
78 kgLeezer
6
76 kgVeelers
8
75 kgJanorschke
9
78 kgFukushima
16
62 kgvan Hummel
17
64 kgArashiro
18
64 kgHonig
25
61 kgvan Poppel
26
78 kgZonneveld
27
63 kgRuijgh
29
64 kgCurvers
34
73 kgMaaskant
36
76 kgForke
58
78 kgHoogerland
61
65 kgStreel
63
69 kgFlahaut
64
66 kg
1
75 kgTraksel
2
72 kgTombak
3
71 kgOmloop
4
78 kgLeezer
6
76 kgVeelers
8
75 kgJanorschke
9
78 kgFukushima
16
62 kgvan Hummel
17
64 kgArashiro
18
64 kgHonig
25
61 kgvan Poppel
26
78 kgZonneveld
27
63 kgRuijgh
29
64 kgCurvers
34
73 kgMaaskant
36
76 kgForke
58
78 kgHoogerland
61
65 kgStreel
63
69 kgFlahaut
64
66 kg
Weight (KG) →
Result →
78
61
1
64
# | Rider | Weight (KG) |
---|---|---|
1 | BOOM Lars | 75 |
2 | TRAKSEL Bobbie | 72 |
3 | TOMBAK Janek | 71 |
4 | OMLOOP Geert | 78 |
6 | LEEZER Tom | 76 |
8 | VEELERS Tom | 75 |
9 | JANORSCHKE Grischa | 78 |
16 | FUKUSHIMA Shinichi | 62 |
17 | VAN HUMMEL Kenny | 64 |
18 | ARASHIRO Yukiya | 64 |
25 | HONIG Reinier | 61 |
26 | VAN POPPEL Boy | 78 |
27 | ZONNEVELD Thijs | 63 |
29 | RUIJGH Rob | 64 |
34 | CURVERS Roy | 73 |
36 | MAASKANT Martijn | 76 |
58 | FORKE Sebastian | 78 |
61 | HOOGERLAND Johnny | 65 |
63 | STREEL Marc | 69 |
64 | FLAHAUT Denis | 66 |