Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 72
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
De Wilde
6
70 kgKelly
7
77 kgBomans
8
74 kgSergeant
10
76 kgDuclos-Lassalle
16
73 kgLilholt
18
72 kgFignon
20
67 kgKuiper
23
69 kgVanderaerden
24
74 kgIlegems
25
74 kgDernies
30
75 kgPlanckaert
34
69 kgPieters
38
82 kgSolleveld
46
93 kgArntz
53
70 kgElliott
56
76 kgBauer
59
72 kgMadiot
60
68 kgYates
61
74 kgMarie
65
68 kgDomínguez
70
67 kgvan der Poel
72
70 kg
6
70 kgKelly
7
77 kgBomans
8
74 kgSergeant
10
76 kgDuclos-Lassalle
16
73 kgLilholt
18
72 kgFignon
20
67 kgKuiper
23
69 kgVanderaerden
24
74 kgIlegems
25
74 kgDernies
30
75 kgPlanckaert
34
69 kgPieters
38
82 kgSolleveld
46
93 kgArntz
53
70 kgElliott
56
76 kgBauer
59
72 kgMadiot
60
68 kgYates
61
74 kgMarie
65
68 kgDomínguez
70
67 kgvan der Poel
72
70 kg
Weight (KG) →
Result →
93
67
6
72
# | Rider | Weight (KG) |
---|---|---|
6 | DE WILDE Etienne | 70 |
7 | KELLY Sean | 77 |
8 | BOMANS Carlo | 74 |
10 | SERGEANT Marc | 76 |
16 | DUCLOS-LASSALLE Gilbert | 73 |
18 | LILHOLT Søren | 72 |
20 | FIGNON Laurent | 67 |
23 | KUIPER Hennie | 69 |
24 | VANDERAERDEN Eric | 74 |
25 | ILEGEMS Roger | 74 |
30 | DERNIES Michel | 75 |
34 | PLANCKAERT Eddy | 69 |
38 | PIETERS Peter | 82 |
46 | SOLLEVELD Gerrit | 93 |
53 | ARNTZ Marcel | 70 |
56 | ELLIOTT Malcolm | 76 |
59 | BAUER Steve | 72 |
60 | MADIOT Marc | 68 |
61 | YATES Sean | 74 |
65 | MARIE Thierry | 68 |
70 | DOMÍNGUEZ Manuel Jorge | 67 |
72 | VAN DER POEL Adrie | 70 |