Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Sciandri
2
75 kgMadiot
6
68 kgJeker
7
72 kgBaguet
11
67 kgRobin
12
63 kgBrochard
19
68 kgSimon
25
70 kgYates
27
74 kgAldag
33
75 kgMarie
37
68 kgGayant
49
69 kgHeulot
53
69 kgDuclos-Lassalle
59
73 kgDernies
64
75 kgAndreu
65
77 kgMadouas
67
70 kgNevens
69
58 kgWauters
70
73 kg
2
75 kgMadiot
6
68 kgJeker
7
72 kgBaguet
11
67 kgRobin
12
63 kgBrochard
19
68 kgSimon
25
70 kgYates
27
74 kgAldag
33
75 kgMarie
37
68 kgGayant
49
69 kgHeulot
53
69 kgDuclos-Lassalle
59
73 kgDernies
64
75 kgAndreu
65
77 kgMadouas
67
70 kgNevens
69
58 kgWauters
70
73 kg
Weight (KG) →
Result →
77
58
2
70
# | Rider | Weight (KG) |
---|---|---|
2 | SCIANDRI Maximilian | 75 |
6 | MADIOT Marc | 68 |
7 | JEKER Fabian | 72 |
11 | BAGUET Serge | 67 |
12 | ROBIN Jean-Cyril | 63 |
19 | BROCHARD Laurent | 68 |
25 | SIMON François | 70 |
27 | YATES Sean | 74 |
33 | ALDAG Rolf | 75 |
37 | MARIE Thierry | 68 |
49 | GAYANT Martial | 69 |
53 | HEULOT Stéphane | 69 |
59 | DUCLOS-LASSALLE Gilbert | 73 |
64 | DERNIES Michel | 75 |
65 | ANDREU Frankie | 77 |
67 | MADOUAS Laurent | 70 |
69 | NEVENS Jan | 58 |
70 | WAUTERS Marc | 73 |