Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Tchmil
1
75 kgBrochard
2
68 kgMengin
4
68 kgMarie
5
68 kgVasseur
6
70 kgHervé
7
62 kgGoubert
8
62 kgBouvard
9
70 kgVan Bondt
14
71 kgO'Grady
16
73 kgAuger
17
78 kgVan Hyfte
18
70 kgMadouas
20
70 kgBourguignon
27
72 kgPretot
29
71 kgMagnien
31
68 kgFarazijn
36
69 kgMattan
37
69 kgVan Lancker
41
67 kgBolay
44
68 kg
1
75 kgBrochard
2
68 kgMengin
4
68 kgMarie
5
68 kgVasseur
6
70 kgHervé
7
62 kgGoubert
8
62 kgBouvard
9
70 kgVan Bondt
14
71 kgO'Grady
16
73 kgAuger
17
78 kgVan Hyfte
18
70 kgMadouas
20
70 kgBourguignon
27
72 kgPretot
29
71 kgMagnien
31
68 kgFarazijn
36
69 kgMattan
37
69 kgVan Lancker
41
67 kgBolay
44
68 kg
Weight (KG) →
Result →
78
62
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | TCHMIL Andrei | 75 |
2 | BROCHARD Laurent | 68 |
4 | MENGIN Christophe | 68 |
5 | MARIE Thierry | 68 |
6 | VASSEUR Cédric | 70 |
7 | HERVÉ Pascal | 62 |
8 | GOUBERT Stéphane | 62 |
9 | BOUVARD Gilles | 70 |
14 | VAN BONDT Geert | 71 |
16 | O'GRADY Stuart | 73 |
17 | AUGER Ludovic | 78 |
18 | VAN HYFTE Paul | 70 |
20 | MADOUAS Laurent | 70 |
27 | BOURGUIGNON Thierry | 72 |
29 | PRETOT Arnaud | 71 |
31 | MAGNIEN Emmanuel | 68 |
36 | FARAZIJN Peter | 69 |
37 | MATTAN Nico | 69 |
41 | VAN LANCKER Kurt | 67 |
44 | BOLAY Sylvain | 68 |