Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Alaphilippe
1
62 kgYates
2
58 kgOomen
3
65 kgSoler
4
68 kgPacher
5
62 kgHenao
6
57 kgCalmejane
7
70 kgLutsenko
8
74 kgLatour
9
66 kgPetilli
10
65 kgValgren
11
71 kgCort
12
68 kgRoosen
13
78 kgPolanc
14
62 kgBystrøm
15
73 kgPibernik
16
60 kgTeuns
17
64 kgLe Gac
18
70 kgSénéchal
19
77 kgGroenewegen
20
70 kgZurlo
21
70 kg
1
62 kgYates
2
58 kgOomen
3
65 kgSoler
4
68 kgPacher
5
62 kgHenao
6
57 kgCalmejane
7
70 kgLutsenko
8
74 kgLatour
9
66 kgPetilli
10
65 kgValgren
11
71 kgCort
12
68 kgRoosen
13
78 kgPolanc
14
62 kgBystrøm
15
73 kgPibernik
16
60 kgTeuns
17
64 kgLe Gac
18
70 kgSénéchal
19
77 kgGroenewegen
20
70 kgZurlo
21
70 kg
Weight (KG) →
Result →
78
57
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ALAPHILIPPE Julian | 62 |
2 | YATES Simon | 58 |
3 | OOMEN Sam | 65 |
4 | SOLER Marc | 68 |
5 | PACHER Quentin | 62 |
6 | HENAO Sebastián | 57 |
7 | CALMEJANE Lilian | 70 |
8 | LUTSENKO Alexey | 74 |
9 | LATOUR Pierre | 66 |
10 | PETILLI Simone | 65 |
11 | VALGREN Michael | 71 |
12 | CORT Magnus | 68 |
13 | ROOSEN Timo | 78 |
14 | POLANC Jan | 62 |
15 | BYSTRØM Sven Erik | 73 |
16 | PIBERNIK Luka | 60 |
17 | TEUNS Dylan | 64 |
18 | LE GAC Olivier | 70 |
19 | SÉNÉCHAL Florian | 77 |
20 | GROENEWEGEN Dylan | 70 |
21 | ZURLO Federico | 70 |