Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Edet
1
60 kgBenoot
2
72 kgDe Gendt
3
73 kgAlaphilippe
4
62 kgPerez
5
70 kgQuintana
6
58 kgKragh Andersen
7
73 kgDíaz
8
64 kgNibali
9
65 kgPinot
10
63 kgParet-Peintre
11
64 kgHiguita
12
57 kgBardet
13
65 kgAsgreen
14
75 kgBettiol
15
69 kgVan Gestel
16
74 kgSchachmann
17
71 kgCombaud
18
63 kgMartin
19
55 kgKüng
20
83 kgAnacona
21
65 kgKonrad
22
64 kgDenz
23
71 kg
1
60 kgBenoot
2
72 kgDe Gendt
3
73 kgAlaphilippe
4
62 kgPerez
5
70 kgQuintana
6
58 kgKragh Andersen
7
73 kgDíaz
8
64 kgNibali
9
65 kgPinot
10
63 kgParet-Peintre
11
64 kgHiguita
12
57 kgBardet
13
65 kgAsgreen
14
75 kgBettiol
15
69 kgVan Gestel
16
74 kgSchachmann
17
71 kgCombaud
18
63 kgMartin
19
55 kgKüng
20
83 kgAnacona
21
65 kgKonrad
22
64 kgDenz
23
71 kg
Weight (KG) →
Result →
83
55
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | EDET Nicolas | 60 |
2 | BENOOT Tiesj | 72 |
3 | DE GENDT Thomas | 73 |
4 | ALAPHILIPPE Julian | 62 |
5 | PEREZ Anthony | 70 |
6 | QUINTANA Nairo | 58 |
7 | KRAGH ANDERSEN Søren | 73 |
8 | DÍAZ José Manuel | 64 |
9 | NIBALI Vincenzo | 65 |
10 | PINOT Thibaut | 63 |
11 | PARET-PEINTRE Aurélien | 64 |
12 | HIGUITA Sergio | 57 |
13 | BARDET Romain | 65 |
14 | ASGREEN Kasper | 75 |
15 | BETTIOL Alberto | 69 |
16 | VAN GESTEL Dries | 74 |
17 | SCHACHMANN Maximilian | 71 |
18 | COMBAUD Romain | 63 |
19 | MARTIN Guillaume | 55 |
20 | KÜNG Stefan | 83 |
21 | ANACONA Winner | 65 |
22 | KONRAD Patrick | 64 |
23 | DENZ Nico | 71 |