Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 117
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Melchers
2
59 kgValen
5
62 kgGunnewijk
9
67 kgKoedooder
10
69 kgVisser
11
59 kgDoppmann
14
55 kgCappellotto
16
60 kgLindberg
19
63 kgMatusiak
20
58 kgValen
27
61 kgFernandes Silva
28
52 kgCarrara
32
64 kgBecker
41
64 kgVžesniauskaitė
43
57 kgBronzini
46
54 kgBloch-Davidov
59
59 kgBrzeźna
64
56 kg
2
59 kgValen
5
62 kgGunnewijk
9
67 kgKoedooder
10
69 kgVisser
11
59 kgDoppmann
14
55 kgCappellotto
16
60 kgLindberg
19
63 kgMatusiak
20
58 kgValen
27
61 kgFernandes Silva
28
52 kgCarrara
32
64 kgBecker
41
64 kgVžesniauskaitė
43
57 kgBronzini
46
54 kgBloch-Davidov
59
59 kgBrzeźna
64
56 kg
Weight (KG) →
Result →
69
52
2
64
# | Rider | Weight (KG) |
---|---|---|
2 | MELCHERS Mirjam | 59 |
5 | VALEN Anita | 62 |
9 | GUNNEWIJK Loes | 67 |
10 | KOEDOODER Vera | 69 |
11 | VISSER Adrie | 59 |
14 | DOPPMANN Priska | 55 |
16 | CAPPELLOTTO Alessandra | 60 |
19 | LINDBERG Madeleine | 63 |
20 | MATUSIAK Bogumiła | 58 |
27 | VALEN Monica | 61 |
28 | FERNANDES SILVA Janildes | 52 |
32 | CARRARA Vera | 64 |
41 | BECKER Charlotte | 64 |
43 | VŽESNIAUSKAITĖ Modesta | 57 |
46 | BRONZINI Giorgia | 54 |
59 | BLOCH-DAVIDOV Shani | 59 |
64 | BRZEŹNA Paulina | 56 |