Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Johansen
1
77 kgDebeaumarché
2
75 kgvan den Dool
4
68 kgvan den Berg
6
72 kgMariault
8
58 kgVanhoof
9
75 kgAvoine
10
70 kgJullien
12
72 kgEinhorn
14
72 kgMontauban
15
68 kgGrignard
16
68 kgBergström Frisk
17
67 kgVerger
18
58 kgChampoussin
20
61 kgGrondin
21
77 kgNolde
25
79 kgDelphis
26
70 kgWærenskjold
27
92 kgO'Mahony
28
69 kgOtruba
29
75 kgMcDunphy
31
70 kgLecamus-Lambert
33
79 kg
1
77 kgDebeaumarché
2
75 kgvan den Dool
4
68 kgvan den Berg
6
72 kgMariault
8
58 kgVanhoof
9
75 kgAvoine
10
70 kgJullien
12
72 kgEinhorn
14
72 kgMontauban
15
68 kgGrignard
16
68 kgBergström Frisk
17
67 kgVerger
18
58 kgChampoussin
20
61 kgGrondin
21
77 kgNolde
25
79 kgDelphis
26
70 kgWærenskjold
27
92 kgO'Mahony
28
69 kgOtruba
29
75 kgMcDunphy
31
70 kgLecamus-Lambert
33
79 kg
Weight (KG) →
Result →
92
58
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Julius | 77 |
2 | DEBEAUMARCHÉ Nicolas | 75 |
4 | VAN DEN DOOL Jens | 68 |
6 | VAN DEN BERG Lars | 72 |
8 | MARIAULT Axel | 58 |
9 | VANHOOF Ward | 75 |
10 | AVOINE Kévin | 70 |
12 | JULLIEN Anthony | 72 |
14 | EINHORN Itamar | 72 |
15 | MONTAUBAN Jeremy | 68 |
16 | GRIGNARD Sébastien | 68 |
17 | BERGSTRÖM FRISK Erik | 67 |
18 | VERGER Simon | 58 |
20 | CHAMPOUSSIN Clément | 61 |
21 | GRONDIN Donavan | 77 |
25 | NOLDE Tobias | 79 |
26 | DELPHIS Thomas | 70 |
27 | WÆRENSKJOLD Søren | 92 |
28 | O'MAHONY Darragh | 69 |
29 | OTRUBA Jakub | 75 |
31 | MCDUNPHY Conn | 70 |
33 | LECAMUS-LAMBERT Florentin | 79 |