Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 88
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Nardello
1
74 kgVandenbroucke
2
67 kgCamenzind
3
62 kgBonča
4
63 kgVan de Wouwer
5
66 kgGabriel
8
60 kgVansevenant
16
65 kgAerts
18
68 kgLontscharitsch
19
70 kgBuxhofer
26
70 kgMattan
27
69 kgLangl
28
66 kgWrolich
31
68 kgHauptman
32
70 kgD'Hollander
33
74 kgJørgensen
39
60 kgAndrle
45
70 kgSørensen
46
71 kgMühlbacher
48
68 kgVan Bondt
60
71 kgHaselbacher
78
69 kg
1
74 kgVandenbroucke
2
67 kgCamenzind
3
62 kgBonča
4
63 kgVan de Wouwer
5
66 kgGabriel
8
60 kgVansevenant
16
65 kgAerts
18
68 kgLontscharitsch
19
70 kgBuxhofer
26
70 kgMattan
27
69 kgLangl
28
66 kgWrolich
31
68 kgHauptman
32
70 kgD'Hollander
33
74 kgJørgensen
39
60 kgAndrle
45
70 kgSørensen
46
71 kgMühlbacher
48
68 kgVan Bondt
60
71 kgHaselbacher
78
69 kg
Weight (KG) →
Result →
74
60
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | NARDELLO Daniele | 74 |
2 | VANDENBROUCKE Frank | 67 |
3 | CAMENZIND Oscar | 62 |
4 | BONČA Valter | 63 |
5 | VAN DE WOUWER Kurt | 66 |
8 | GABRIEL Frédéric | 60 |
16 | VANSEVENANT Wim | 65 |
18 | AERTS Mario | 68 |
19 | LONTSCHARITSCH Josef | 70 |
26 | BUXHOFER Matthias | 70 |
27 | MATTAN Nico | 69 |
28 | LANGL Andreas | 66 |
31 | WROLICH Peter | 68 |
32 | HAUPTMAN Andrej | 70 |
33 | D'HOLLANDER Glenn | 74 |
39 | JØRGENSEN René | 60 |
45 | ANDRLE René | 70 |
46 | SØRENSEN Nicki | 71 |
48 | MÜHLBACHER Thomas | 68 |
60 | VAN BONDT Geert | 71 |
78 | HASELBACHER René | 69 |