Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Lombardi
1
73 kgLontscharitsch
2
70 kgGlomser
4
67 kgŠtangelj
6
70 kgMurn
7
70 kgBonča
8
63 kgTotschnig
9
62 kgNardello
10
74 kgShefer
12
68 kgBertolini
13
63 kgTrampusch
14
60 kgSerpellini
15
75 kgKessler
19
70 kgPoitschke
21
73 kgSpruch
22
68 kgRatti
24
64 kgBertogliati
25
73 kgOzols
27
74 kgCamenzind
34
62 kgMoos
36
64 kg
1
73 kgLontscharitsch
2
70 kgGlomser
4
67 kgŠtangelj
6
70 kgMurn
7
70 kgBonča
8
63 kgTotschnig
9
62 kgNardello
10
74 kgShefer
12
68 kgBertolini
13
63 kgTrampusch
14
60 kgSerpellini
15
75 kgKessler
19
70 kgPoitschke
21
73 kgSpruch
22
68 kgRatti
24
64 kgBertogliati
25
73 kgOzols
27
74 kgCamenzind
34
62 kgMoos
36
64 kg
Weight (KG) →
Result →
75
60
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | LOMBARDI Giovanni | 73 |
2 | LONTSCHARITSCH Josef | 70 |
4 | GLOMSER Gerrit | 67 |
6 | ŠTANGELJ Gorazd | 70 |
7 | MURN Uroš | 70 |
8 | BONČA Valter | 63 |
9 | TOTSCHNIG Georg | 62 |
10 | NARDELLO Daniele | 74 |
12 | SHEFER Alexandre | 68 |
13 | BERTOLINI Alessandro | 63 |
14 | TRAMPUSCH Gerhard | 60 |
15 | SERPELLINI Marco | 75 |
19 | KESSLER Matthias | 70 |
21 | POITSCHKE Enrico | 73 |
22 | SPRUCH Zbigniew | 68 |
24 | RATTI Eddy | 64 |
25 | BERTOGLIATI Rubens | 73 |
27 | OZOLS Dainis | 74 |
34 | CAMENZIND Oscar | 62 |
36 | MOOS Alexandre | 64 |