Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Pronskiy
1
58 kgCovili
2
58 kgChevalier
3
60 kgRöber
4
68 kgEngelhardt
5
68 kgZimmermann
6
70 kgBouwmans
7
64 kgvan den Berg
8
72 kgvan der Tuuk
9
64 kgPrah
10
63 kgBogusławski
11
77 kgOmrzel
12
67 kgRivera
13
56 kgGamper
15
80 kgFriedrich
16
71 kgNolde
17
79 kgKierner
18
79 kgRajović
19
74 kgFouché
20
71 kgGamper
21
86 kgRivi
22
72 kg
1
58 kgCovili
2
58 kgChevalier
3
60 kgRöber
4
68 kgEngelhardt
5
68 kgZimmermann
6
70 kgBouwmans
7
64 kgvan den Berg
8
72 kgvan der Tuuk
9
64 kgPrah
10
63 kgBogusławski
11
77 kgOmrzel
12
67 kgRivera
13
56 kgGamper
15
80 kgFriedrich
16
71 kgNolde
17
79 kgKierner
18
79 kgRajović
19
74 kgFouché
20
71 kgGamper
21
86 kgRivi
22
72 kg
Weight (KG) →
Result →
86
56
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | PRONSKIY Vadim | 58 |
2 | COVILI Luca | 58 |
3 | CHEVALIER Maxime | 60 |
4 | RÖBER Dominik | 68 |
5 | ENGELHARDT Felix | 68 |
6 | ZIMMERMANN Georg | 70 |
7 | BOUWMANS Dylan | 64 |
8 | VAN DEN BERG Lars | 72 |
9 | VAN DER TUUK Danny | 64 |
10 | PRAH Aljaž | 63 |
11 | BOGUSŁAWSKI Marceli | 77 |
12 | OMRZEL Aljaž | 67 |
13 | RIVERA Kevin | 56 |
15 | GAMPER Patrick | 80 |
16 | FRIEDRICH Marco | 71 |
17 | NOLDE Tobias | 79 |
18 | KIERNER Florian | 79 |
19 | RAJOVIĆ Dušan | 74 |
20 | FOUCHÉ James | 71 |
21 | GAMPER Florian | 86 |
22 | RIVI Samuele | 72 |