Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Cavanagh
1
72 kgCahyadi
4
52 kgJurado
6
68 kgCuley
7
69 kgQuintero
8
63 kgOram
9
68 kgOvechkin
12
61 kgNieto
13
58 kgQuick
15
77 kgSainbayar
19
60 kgOrmiston
28
66 kgMazuki
29
57 kgManulang
30
59 kgMisbah
32
56 kgChoi
35
53 kgEyob
48
61 kgSetiawan
50
61 kgMat Amin
56
54 kgIderbold
62
58 kgĐurić
72
78 kgJones
74
82 kgGoh
75
54 kgMuzychkin
86
76 kg
1
72 kgCahyadi
4
52 kgJurado
6
68 kgCuley
7
69 kgQuintero
8
63 kgOram
9
68 kgOvechkin
12
61 kgNieto
13
58 kgQuick
15
77 kgSainbayar
19
60 kgOrmiston
28
66 kgMazuki
29
57 kgManulang
30
59 kgMisbah
32
56 kgChoi
35
53 kgEyob
48
61 kgSetiawan
50
61 kgMat Amin
56
54 kgIderbold
62
58 kgĐurić
72
78 kgJones
74
82 kgGoh
75
54 kgMuzychkin
86
76 kg
Weight (KG) →
Result →
82
52
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | CAVANAGH Ryan | 72 |
4 | CAHYADI Aiman | 52 |
6 | JURADO Christofer Robín | 68 |
7 | CULEY Marcus | 69 |
8 | QUINTERO Carlos | 63 |
9 | ORAM James | 68 |
12 | OVECHKIN Artem | 61 |
13 | NIETO Edgar | 58 |
15 | QUICK Blake | 77 |
19 | SAINBAYAR Jambaljamts | 60 |
28 | ORMISTON Callum | 66 |
29 | MAZUKI Nur Amirul Fakhruddin | 57 |
30 | MANULANG Robin | 59 |
32 | MISBAH Muhsin Al Redha | 56 |
35 | CHOI Hiu Fung | 53 |
48 | EYOB Metkel | 61 |
50 | SETIAWAN Andreas Odie Purnama | 61 |
56 | MAT AMIN Mohd Shahrul | 54 |
62 | IDERBOLD Bold | 58 |
72 | ĐURIĆ Đorđe | 78 |
74 | JONES Taj | 82 |
75 | GOH Choon Huat | 54 |
86 | MUZYCHKIN Anton | 76 |