Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Choi
1
59 kgNakajima
3
64 kgMcconvey
5
67 kgCheung
7
59 kgLiphongyu
10
61 kgMat Amin
12
54 kgGaledo
13
58 kgAsadov
20
77 kgHatanaka
23
72 kgIribe
24
61 kgBoonratanathanakorn
26
72 kgTrịnh
28
70 kgSaleh
46
58 kgKhalmuratov
52
68 kgLeung
55
73 kgGoh
56
54 kgPriya Prasetya
63
62 kgKuboki
66
68 kgSaleh
72
70 kgYasuhara
73
62 kgFukuda
78
70 kg
1
59 kgNakajima
3
64 kgMcconvey
5
67 kgCheung
7
59 kgLiphongyu
10
61 kgMat Amin
12
54 kgGaledo
13
58 kgAsadov
20
77 kgHatanaka
23
72 kgIribe
24
61 kgBoonratanathanakorn
26
72 kgTrịnh
28
70 kgSaleh
46
58 kgKhalmuratov
52
68 kgLeung
55
73 kgGoh
56
54 kgPriya Prasetya
63
62 kgKuboki
66
68 kgSaleh
72
70 kgYasuhara
73
62 kgFukuda
78
70 kg
Weight (KG) →
Result →
77
54
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | CHOI Ki Ho | 59 |
3 | NAKAJIMA Yasuharu | 64 |
5 | MCCONVEY Connor | 67 |
7 | CHEUNG King Lok | 59 |
10 | LIPHONGYU Navuti | 61 |
12 | MAT AMIN Mohd Shahrul | 54 |
13 | GALEDO Mark John Lexer | 58 |
20 | ASADOV Elchin | 77 |
23 | HATANAKA Yusuke | 72 |
24 | IRIBE Shotaro | 61 |
26 | BOONRATANATHANAKORN Turakit | 72 |
28 | TRỊNH Đức Tâm | 70 |
46 | SALEH Mohd Zamri | 58 |
52 | KHALMURATOV Muradjan | 68 |
55 | LEUNG Chun Wing | 73 |
56 | GOH Choon Huat | 54 |
63 | PRIYA PRASETYA Heksa | 62 |
66 | KUBOKI Kazushige | 68 |
72 | SALEH Mohd Harrif | 70 |
73 | YASUHARA Daiki | 62 |
78 | FUKUDA Shinpei | 70 |