Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Hall
1
52 kgPoidevin
2
56 kgThomas
3
58 kgPitel
4
52 kgPeñuela
5
53 kgDuehring
6
54 kgPrieto
7
54 kgLuebke
9
54 kgDygert
12
66 kgPowless
13
59 kgFranz
18
52 kgRamirez
19
54 kgParra
24
58 kgBanks
28
62 kgWilliams
29
66 kgClevenger
36
57 kgTeddergreen
37
51 kgScandolara
40
52 kg
1
52 kgPoidevin
2
56 kgThomas
3
58 kgPitel
4
52 kgPeñuela
5
53 kgDuehring
6
54 kgPrieto
7
54 kgLuebke
9
54 kgDygert
12
66 kgPowless
13
59 kgFranz
18
52 kgRamirez
19
54 kgParra
24
58 kgBanks
28
62 kgWilliams
29
66 kgClevenger
36
57 kgTeddergreen
37
51 kgScandolara
40
52 kg
Weight (KG) →
Result →
66
51
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | HALL Katie | 52 |
2 | POIDEVIN Sara | 56 |
3 | THOMAS Leah | 58 |
4 | PITEL Edwige | 52 |
5 | PEÑUELA Diana | 53 |
6 | DUEHRING Jasmin | 54 |
7 | PRIETO Marcela Elizabeth | 54 |
9 | LUEBKE Jennifer | 54 |
12 | DYGERT Chloé | 66 |
13 | POWLESS Shayna | 59 |
18 | FRANZ Heidi | 52 |
19 | RAMIREZ Andrea | 54 |
24 | PARRA Jessica Marcela | 58 |
28 | BANKS Elizabeth | 62 |
29 | WILLIAMS Lily | 66 |
36 | CLEVENGER Erica | 57 |
37 | TEDDERGREEN Starla | 51 |
40 | SCANDOLARA Valentina | 52 |