Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Hoogerland
1
65 kgDevillers
2
62 kgVerbist
4
73 kgVan Avermaet
5
74 kgGesink
6
70 kgKozontchuk
7
75 kgGoesinnen
8
75 kgDe Ketele
10
66 kgButterfield
12
75 kgBoom
13
75 kgPratte
15
67 kgTimmer
21
77 kgLeezer
23
76 kgDall'Antonia
24
70 kgDe Greef
25
77 kgRoelandts
26
78 kgTanner
27
70 kgScognamiglio
28
67 kgBakelants
29
67 kg
1
65 kgDevillers
2
62 kgVerbist
4
73 kgVan Avermaet
5
74 kgGesink
6
70 kgKozontchuk
7
75 kgGoesinnen
8
75 kgDe Ketele
10
66 kgButterfield
12
75 kgBoom
13
75 kgPratte
15
67 kgTimmer
21
77 kgLeezer
23
76 kgDall'Antonia
24
70 kgDe Greef
25
77 kgRoelandts
26
78 kgTanner
27
70 kgScognamiglio
28
67 kgBakelants
29
67 kg
Weight (KG) →
Result →
78
62
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | HOOGERLAND Johnny | 65 |
2 | DEVILLERS Gilles | 62 |
4 | VERBIST Evert | 73 |
5 | VAN AVERMAET Greg | 74 |
6 | GESINK Robert | 70 |
7 | KOZONTCHUK Dmitry | 75 |
8 | GOESINNEN Floris | 75 |
10 | DE KETELE Kenny | 66 |
12 | BUTTERFIELD Tyler | 75 |
13 | BOOM Lars | 75 |
15 | PRATTE Philippe | 67 |
21 | TIMMER Albert | 77 |
23 | LEEZER Tom | 76 |
24 | DALL'ANTONIA Tiziano | 70 |
25 | DE GREEF Francis | 77 |
26 | ROELANDTS Jürgen | 78 |
27 | TANNER David | 70 |
28 | SCOGNAMIGLIO Carlo | 67 |
29 | BAKELANTS Jan | 67 |