Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Grabsch
1
78 kgMoncoutié
3
69 kgLjungqvist
7
73 kgWadecki
8
70 kgLöwik
9
72 kgUsov
10
63 kgMutsaars
17
67 kgGates
20
71 kgTankink
22
71 kgKristensen
24
70 kgBarry
28
72 kgWielinga
29
68 kgLafis
31
78 kgLoder
33
62 kgle Boulanger
35
70 kgMoerenhout
37
74 kgGlasner
38
72 kgten Dam
39
67 kgFox
42
70 kgLupeikis
45
80 kgDerepas
51
69 kgThijs
53
69 kgChmielewski
58
72 kg
1
78 kgMoncoutié
3
69 kgLjungqvist
7
73 kgWadecki
8
70 kgLöwik
9
72 kgUsov
10
63 kgMutsaars
17
67 kgGates
20
71 kgTankink
22
71 kgKristensen
24
70 kgBarry
28
72 kgWielinga
29
68 kgLafis
31
78 kgLoder
33
62 kgle Boulanger
35
70 kgMoerenhout
37
74 kgGlasner
38
72 kgten Dam
39
67 kgFox
42
70 kgLupeikis
45
80 kgDerepas
51
69 kgThijs
53
69 kgChmielewski
58
72 kg
Weight (KG) →
Result →
80
62
1
58
# | Rider | Weight (KG) |
---|---|---|
1 | GRABSCH Bert | 78 |
3 | MONCOUTIÉ David | 69 |
7 | LJUNGQVIST Marcus | 73 |
8 | WADECKI Piotr | 70 |
9 | LÖWIK Gerben | 72 |
10 | USOV Alexandre | 63 |
17 | MUTSAARS Ronald | 67 |
20 | GATES Nick | 71 |
22 | TANKINK Bram | 71 |
24 | KRISTENSEN Lennie | 70 |
28 | BARRY Michael | 72 |
29 | WIELINGA Remmert | 68 |
31 | LAFIS Michel | 78 |
33 | LODER Thierry | 62 |
35 | LE BOULANGER Yoann | 70 |
37 | MOERENHOUT Koos | 74 |
38 | GLASNER Björn | 72 |
39 | TEN DAM Laurens | 67 |
42 | FOX Morgan | 70 |
45 | LUPEIKIS Remigius | 80 |
51 | DEREPAS David | 69 |
53 | THIJS Erwin | 69 |
58 | CHMIELEWSKI Piotr | 72 |