Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Herrada
1
70 kgTxurruka
2
58 kgAntón
3
64 kgGarcia
4
55 kgShalunov
5
70 kgIzagirre
6
60 kgFernández
7
60 kgBravo
8
61 kgMoreno
9
63 kgFraile
10
72 kgTorres
11
56 kgGallego
12
62 kgBelda
13
53 kgMadrazo
14
61 kgMancebo
15
64 kgRamirez
16
69 kgRubiano
17
58 kgRodrigues
18
60 kgFigueiredo
19
56 kgVilela
20
59 kgFernández
21
69 kg
1
70 kgTxurruka
2
58 kgAntón
3
64 kgGarcia
4
55 kgShalunov
5
70 kgIzagirre
6
60 kgFernández
7
60 kgBravo
8
61 kgMoreno
9
63 kgFraile
10
72 kgTorres
11
56 kgGallego
12
62 kgBelda
13
53 kgMadrazo
14
61 kgMancebo
15
64 kgRamirez
16
69 kgRubiano
17
58 kgRodrigues
18
60 kgFigueiredo
19
56 kgVilela
20
59 kgFernández
21
69 kg
Weight (KG) →
Result →
72
53
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | HERRADA Jesús | 70 |
2 | TXURRUKA Amets | 58 |
3 | ANTÓN Igor | 64 |
4 | GARCIA Marcos | 55 |
5 | SHALUNOV Evgeny | 70 |
6 | IZAGIRRE Ion | 60 |
7 | FERNÁNDEZ Rubén | 60 |
8 | BRAVO Garikoitz | 61 |
9 | MORENO Javier | 63 |
10 | FRAILE Omar | 72 |
11 | TORRES Rodolfo Andrés | 56 |
12 | GALLEGO Alberto | 62 |
13 | BELDA David | 53 |
14 | MADRAZO Ángel | 61 |
15 | MANCEBO Francisco | 64 |
16 | RAMIREZ Brayan Steven | 69 |
17 | RUBIANO Miguel Angel | 58 |
18 | RODRIGUES David Miguel Costa | 60 |
19 | FIGUEIREDO Frederico | 56 |
20 | VILELA Ricardo | 59 |
21 | FERNÁNDEZ Delio | 69 |