Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Voskamp
1
75 kgBoogerd
2
62 kgTraksel
3
72 kgSchmitz
4
77 kgGeorge
5
61 kgKrauß
7
81 kgVeneberg
12
75 kgLöwik
14
72 kgHayman
15
78 kgMutsaars
16
67 kgNys
18
73 kgStrauss
19
69 kgBäckstedt
20
94 kgCarrara
26
67 kgOrdowski
27
59 kgRittsel
28
70 kgKolobnev
29
64 kgKristensen
30
70 kgPospyeyev
32
71 kgRoesems
37
81 kg
1
75 kgBoogerd
2
62 kgTraksel
3
72 kgSchmitz
4
77 kgGeorge
5
61 kgKrauß
7
81 kgVeneberg
12
75 kgLöwik
14
72 kgHayman
15
78 kgMutsaars
16
67 kgNys
18
73 kgStrauss
19
69 kgBäckstedt
20
94 kgCarrara
26
67 kgOrdowski
27
59 kgRittsel
28
70 kgKolobnev
29
64 kgKristensen
30
70 kgPospyeyev
32
71 kgRoesems
37
81 kg
Weight (KG) →
Result →
94
59
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | VOSKAMP Bart | 75 |
2 | BOOGERD Michael | 62 |
3 | TRAKSEL Bobbie | 72 |
4 | SCHMITZ Bram | 77 |
5 | GEORGE David | 61 |
7 | KRAUß Sven | 81 |
12 | VENEBERG Thorwald | 75 |
14 | LÖWIK Gerben | 72 |
15 | HAYMAN Mathew | 78 |
16 | MUTSAARS Ronald | 67 |
18 | NYS Sven | 73 |
19 | STRAUSS Marcel | 69 |
20 | BÄCKSTEDT Magnus | 94 |
26 | CARRARA Matteo | 67 |
27 | ORDOWSKI Volker | 59 |
28 | RITTSEL Martin | 70 |
29 | KOLOBNEV Alexandr | 64 |
30 | KRISTENSEN Lennie | 70 |
32 | POSPYEYEV Kyrylo | 71 |
37 | ROESEMS Bert | 81 |